Strategic Asset Allocation in Fixed Income
Markets: A Matlab Based User’s Guide

Ken Nyholm

Dcember 2007
Preliminary and incomplete version

Contents

1 Strategic Allocation 7
1.1 Imtroduction 7

1.2 Components of the Investment Process 8

2 Essential Elements of Matlab 9
2.1 Imtroductiono 9
2.2 Getting started' 10
2.3 Introductory matrix algebra 15
2.4 Organisingdata L oL 20
2.5 Creating functions L. 22
2.5.1 Branching and looping 23

2.5.2 An example of a simple function 25

2.5.3 Calling functions in Matlab(R) 27

2.6 The linear regression 28
2.6.1 The basicsetup L. 28

2.6.2 Maximum likelihood 31

2.7 Some estimation examples 32
2.8 A brief introduction to simulations 38
2.8.1 Generating correlated random numbers 43

3 Fixed Income Preliminaries 47
3.1 Imtroduction 47
3.2 Spotratesand yields L. 47
3.3 Forwardrates 57
3.4 Bond pricing functions oL L o8
3.5 Exercises 59

More information about Matlab(R) and how to use it can be found on the internet,
see for example, ”www.mathworks.com” and ”www.econphd.net/notes”

SAA in Fixed Income Markets: A Matlab Based User’s Guide

4 Risk and Return Measures 60
4.1 Introduction 60
4.2 Risk Measures 60

4.2.1 Value-at-risk and Expected Shortfall 62
4.2.2 Duration and modified duration 69
4.3 Fixed Income Returns 7

5 Term Structure Models 82
5.1 Introduction 82
5.2 Not-Necessarily Arbitrage Free Models 83

5.2.1 Nelson and Siegel 83
5.2.2 Svensson and Soderlind 87
5.3 Arbitrage Free Models 88
5.3.1 Vasicek 91
5.3.2 Multi-factor models: an example 93

6 Asset Allocation 99
6.1 Introduction 99
6.2 Efficient portfolios 99
6.3 Diversification Lo 108
6.4 The minimum variance portfolio 112
6.5 Asset weight constraints 115
6.6 The Capital Asset Pricing Model 122

7 Statistical Tools 126
7.1 Introduction 126
7.2 The Vector Auto Regression 127

7.2.1 Order of integration 128
7.3 Regime switching models 130
7.3.1 Introduction L. 130
7.4 Yield curve models in state-space form 143
7.4.1 The Nelson-Siegel model in state-space 143
7.5 Importance Sampling oo 150
7.5.1 Sometheory 150
752 Anexample 151

c¢) K. Nyholm, 2007 page 2
()

SAA in Fixed Income Markets: A Matlab Based User’s Guide

8 Building graphical user interfaces 156
8.1 Introduction 156
8.2 The "guide” development environment 157
8.3 Creating a simple GUI 159

8.3.1 Plotting the yield curve 162
8.3.2 Estimating A and yield curve factors 166

9 Useful Formulas and Expressions 172
9.1 Introduction 172
9.2 Matrix operations L 172

9.2.1 Definitions 172
9.22 Sum 173
9.2.3 Product 173
9.24 Transpose 173
9.2.5 Symmetric matrix 173
9.2.6 The Identity matrix: 174
9.2.7 Determinant L. 174
928 Rank 174
929 Inverse 175
9.210 Trace. Lo 175
9.2.11 Powers 176
9.2.12 Eigenvalues and eigenvectors 176
9.2.13 Positive definite 176
9.2.14 Matrix differentiation 177
9.3 Decompositionso 177
9.3.1 Triangular L. 177
9.3.2 Cholesky 177
9.3.3 Eigenvalue oL 178
9.4 Basicrules 178
9.4.1 Indexrules 178
9.4.2 Logarithmrules 179
9.4.3 Simple derivatives 179
9.4.4 Simpleintegralso 180
9.5 Distributions 181
951 Normal 181
9.5.2 Multivariate normal 181
9.5.3 t-distribution L. 181
954 Copulas 181

(c¢) K. Nyholm, 2007 page 3

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.5.5 Vasicek’s limiting distribution 182
9.6 Functions 182
9.6.1 Linear (affine) function 182
9.6.2 Quadratic function 183
9.6.3 General polynominals 183
9.6.4 Exponential L. 183
9.6.5 Logarithm 183
9.6.6 Error function L. 184
9.6.7 Inverse 184
9.7 Taylor series approximation 184
9.8 Interest rates, returns and portfolio statistics 185
9.8.1 Cummulative arithmetic return 185
9.8.2 Average arithmetic return 185
9.8.3 Cummulative geometric return. 185
9.8.4 Average geometric return L. 185
9.8.5 Compounding of interest rates 185
9.8.6 Portfolio statistics. 186

(c¢) K. Nyholm, 2007 page 4

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Preface

Initially, the work contained in this book was intended as background
readings for students at the Finance Department of the Frankfurt University
for a course on ”Fixed Income Strategic Asset Allocation in Practice”, which
I started to teach some years ago. A literature search for an appropriate text
book that combines fixed income analysis, portfolio theory, and in-depth
computer based applications concluded unsuccessfully. Consequently, I set
out to write lecture notes, aiming to illustrate by example and explain topics
arising in the intersection between fixed income portfolio management and
applied econometrics. As a computer tool I decided to rely on Matlab(R).

The main purpose of the book is to provide assistance to readers who
are interested in the implementation of financial and econometric models in
Matlab(R). While the provided annotated examples by no means claim to
be ”the best way” to program and implement such models and techniques, it
is the hope that the text still can serve as a valuable introductory treatment
relevant for students and practitioners alike. In particular, many practition-
ers (and students, it seems) cannot find the time (although, probably for
different reasons) to do the necessary foot-work to get started implementing
models in Matlab(R) - with those in mind, the aim of this book is to lower
the ”barrier of entry” to successful implementation of financial models.

It is my belief that a thorough understanding of financial concepts, their
strengths, weaknesses and practical applicability is best facilitated by the use
of concrete examples. This idea is the underpinning pedagogical philosophy
of the book: All central concepts and theories are illustrated by Matlab(R)
implementations, which are accompanied by detailed descriptions of the pro-
gramming steps needed. In this way, the book can be used as an introduction
to finance and/or Matlab(R).

The main prerequisites for reading the book are: a keen interest to explore
financial models in practise and an educational background roughly equiv-
alent to a bachelor’s degree in a moderately technical field. All concepts
and techniques are introduced from the basic level so the latter prerequisite
is easily compensated by the former: Mathematically adept individuals will
probably find the text and examples relatively easy while individuals with
somewhat rusty mathematical skills (probably) will find the text refreshing.

[INSERT DESCRIPTION OF THE CHAPTERS OF THE BOOK...]

While having a different focus and coverage compared to the current ex-

(c¢) K. Nyholm, 2007 page 5

SAA in Fixed Income Markets: A Matlab Based User’s Guide

position, it should be mentioned that the above referred literature search
did uncover some very interesting books in the juncture of finance and Mat-
lab(R) programing, see e.g. McLeish (2005) for a thorough description of
efficient simulation methods mainly applied to the area of derivatives pricing
and variance reduction techniques; Meucci (2005) gives an in-depth account
of risk and asset allocation drawing on elements from the theory of multi-
variate statistics; Down (2005) contains a good introduction to measurement
of financial risks; and Brandimarte (2002) focuses on optimisation methods
useful in financial applications.

The book is accompanied by an online resource at the webpage: www.KenNyholm.com
where all Matlab(R) programs referred in the text can be downloaded for free.
The site also contains lecture slides that can be used by any who want to
include the book, in full or in parts, in their teaching. In addition, answers
to selected end-chapter exercises can be downloaded in pdf format.

This version: 17 December 2007.

Acknowledgements

Thanks to my colleagues in the Risk Management Division of the Euro-
pean Central Bank: Ulrich Bindseil, Matti Koivu, Evangelos Tabakis, and
Julia Weber for providing comments on previous drafts. I especially want to
thank Han van der Hoorn for his detailed comments, suggestions and efforts
to improve the text.

(c¢) K. Nyholm, 2007 page 6

Chapter 1

Strategic Allocation

1.1 Introduction

The goal of strategic asset allocation is to find an optimal allocation of funds
across different asset classes subject to a relatively long investment horizon.
The optimal allocation of funds should always reflect the risk return pref-
erences of an institution and the machinery underlying the strategic asset
allocation decisions should be based on a transparent and accountable pro-
cess with which such allocations can be determined and reviewed at regular
intervals. Often “Modern Portfolio Theory” is presented following Markowitz
(1959) and Sharpe (1964) in the context of the Capital Asset Pricing Model
(CAPM) and mean-variance portfolio analysis as the basic theory for how eq-
uity markets behave in equilibrium and how investors should position them-
selves on the efficient frontier, depending on their risk aversion. This theory
is central to the understanding of modern finance and thus important for
students and market practitioners alike. However, when it comes to actual
portfolio allocation decisions and the practical implementation of portfolio al-
location decisions in public and private investment organizations the CAPM
leaves, quite understandably, many questions unanswered. It is some of these
missing answers that we address in this book. In doing so, the viewpoint of
a strategic investor is taken, however, elements relevant for tactical asset al-
location and portfolio managers are also touched upon. In particular, the
focal point of the exposition is that of a fixed income asset manager. This
perspective naturally narrows the investment universe considerably. As a
consequence, the topics treated in the book revolve mainly around an invest-

SAA in Fixed Income Markets: A Matlab Based User’s Guide
ment universe comprising fixed income securities.

1.2 Components of the Investment Process
A list of the topics covered in this section
e Strategic asset allocation

— Purpose / general properties: yard stick for active management;
reflects the institutions long-term risk return preferences; replica-
bility; review frequency; stability of modified duration over time;
rebalancing; choice of instrument universe; relevant literature.

— How to generate the asset allocation proposal; decision making
process in investment houses; asset constraints; in-stability of
Markowitz optimisation / parameter uncertainty; utility functions;
existence of a risk-free asset

e Tactical asset allocation decisions

— Purpose / general properties: outperform strategic allocation;
How and by the use of which means? Limits to outperformance
(it is debatable whether it add value); objective function;

— Techniques and tools: Black-Litterman / Bayesian approaches;
performance evaluation tools;

[To be written...]

(c¢) K. Nyholm, 2007 page 8

Chapter 2

Essential Elements of Matlab

2.1 Introduction

This chapter illustrates some core functionalities of Matlab(R) using easy-to-
understand examples taken from the areas of Matrix Algebra and Economet-
rics - so, this section can also be used as a brief recap of these areas. First,
a review is given of the programming and matrix capabilities of the pro-
gramming package; then it is shown how Matlab(R) can be used to solve the
linear regression problem; and finally, the chapter concludes by showing ex-
amples of how simulation studies can be undertaken by the use of Matlab(R).
Throughout the book Matlab(R) will be used in solving financial problems
of an empirical nature. Hence, in later chapters, there will be ample oppor-
tunity to revisit and expand on the topics introduced in this introductory
chapter.

Learning objectives
e Get familiar with Matlab(R)

— help function

— graphing functions

— assign values to vectors and matrices in two and three dimensions
— storing data in structured variables

— mathematical operators

SAA in Fixed Income Markets: A Matlab Based User’s Guide

— loops and conditioning

e Review central concepts from the areas of matrix algebra and quanti-
tative techniques

— Matrix algebra

x vector and matrix operations
x transpose of vectors and matrices
* square matrices

* matrix inversion
— Quantitative techniques

* linear regression
* likelihood estimation

x simulation techniques

2.2 Getting started!

It is assumed that Matlab(R) is already installed and fully functional. The
command prompt ”>>" is one way that you as a user can work with Mat-
lab(R). Lets start simple by drawing a graph of random numbers using com-
mand prompt input. Note that through out the text, for notational purposes,
Matlab(R) examples are contained in a box as seen below. The command
prompt ”>>" is omitted in these examples but line numbers are added to
facilitate annotation. These line number should naturally not be entered
when trying out the examples!

[1] ¥ = randn(10,1); % assigns 10 N(0,1) random values to vector r
[2] plot(r,'ko’) % plots r with black ’o’ marking

[3] xlabel (’Observation number’) % adds x-axis text

[4] ylabel (’Value'’) % adds y-axis text

'More information about Matlab(R) and how to use it can be found on the internet,
see for example, ”www.mathworks.com” and ”www.econphd.net /notes”

(c¢) K. Nyholm, 2007 page 10

SAA in Fixed Income Markets: A Matlab Based User’s Guide

In the above example, line [1] generates a column vector r that contains
10 normally distributed random numbers. To this end the built-in random
number generator randn is used. This function requires two inputs that
determine the dimension of the output matrix/vector. The first input deter-
mines the number of columns, and the second determined the number of rows.
Random numbers do not necessarily have to be normally distributed, for ex-
ample, Matlab(R) can also generate uniformly distributed random numbers:
this is done by the function rand. Line [2] plots r, and lines [3] and [4] adds
axis labels to the plot. Two special characters are used in the above example;
these are:

e "% indicates to Matlab(R) that what ever follows after should not
be processed. Hence, the % character can be used in Matlab(R) to
write help-text to the users and colleague Matlab(R) programmers.
Additionally, a collection of lines preceded by ”%” at the very beginning
of a Matlab(R) function constitutes the help-text of that function and
is printed to screen if a ”help my_function_name” command is invoked.

e 77 tells Matlab(R) not to make a screen-print of the answer produced
by the calculations conducted by the line concluded by ”;”.2

Executing the above lines of code generates a picture similar to Figure 2.1.
When executing the lines from the above example, you might get something
which is not exactly equal to the graph shown. This is because we draw
random numbers, and every draw will be different, due to the randomness.
More information about the random number generator in Matlab(R) can be
obtained via the built-in help function: simply type:

and Matlab brings up the following message (only part of the actual help
message is reprinted below):

i.e. omitting the ”;”.

(c¢) K. Nyholm, 2007 page 11

SAA in Fixed Income Markets: A Matlab Based User’s Guide

15 T T T T T T T T

Yalue

_2 1 1 1 1 1 1 1 1
1 2 3 4 g B 7 g 9 10

Observation number

Figure 2.1: Example of the "plot” command

RANDN Normally distributed random numbers.

R = RANDN (N) returns an N-by-N matrix containing pseudo-random values drawn

from a normal distribution with mean zero and standard deviation one. RANDN (M,N)

or RANDN([M,N]) returns an M-by-N matrix. RANDN(M,N,P,...) or RANDN([M,N,P,..

returns an M-by-N-by-P-by-... array. RANDN with no arguments returns a

scalar. RANDN(SIZE(A)) returns an array the same size as A.

This is a general feature of Matlab(R): for every Matlab(R) function you
can see the accompanying help text by using the "help” command. In this
connection it should also be mentioned that a searchable help function exists.
This one can be activated by the following command:

[1] helpdesk

Returning to the plotting example from above. Situations might arise where
it is desirable to show several graphs in one plot-window, different graphs
in different plot-windows at the same time, or different graphs in different
plot-windows but collected in one display. To this end the commands ”hold

(c¢) K. Nyholm, 2007 page 12

-1

SAA in Fixed Income Markets: A Matlab Based User’s Guide

on”, "figure” and ”subplot” are helpful; the examples below demonstrates

[1] clear all % deletes all variables in the workspace
[2] clc % clears the view on the workspace

[3] r1l = rand(7,1); % generates uniform random variables

[4] r2 = [5; 4;3;0;,-1; -1, -10]; % column vector of the entered values

[5] plot(rl)
[6] hold on

[7] plot(r2)

Figure 2.2: Example of the "hold on” command

Delete the plot, as usual in Windows(R)), by clicking in the right hand corner
of the plot-window. Then proceed with the following:

[1] plot(rl)
[2] figure

[3] plot(r2)

(c¢) K. Nyholm, 2007 page 13

SAA in Fixed Income Markets: A Matlab Based User’s Guide

These lines of code plot the vectors r1 and 72 in two separate windows (not
shown here).? If the "figure” command is omitted, i.e. two (or more) plot
statements are repeated right after each other, Matlab will print all graphs
in the same window and only the last plot remains visible.

The last plotting example below shows how four graphs can be displayed
together in one plot by using the ”subplot” command. Close any open figures
and proceed with the example below.

[1] clear all
[2] clc

[3] rl = rand(10,1); r2 = rand(10,1); r3 = randn(10,1); r4 = randn(10,1);

[4] whos % displays the variables on the workspace
[5] subplot(2,2,1), plot(rl)
[6] subplot(2,2,2), plot(r2)
[7] subplot(2,2,3), plot(r3)
[8] subplot(2,2,4), plot(r4)

These lines generate a figure similar to the one shown below.
There exist basically three ways in which the user can communicate with
Matlab(R), of which two have been illustrated above:

e Via the command line: i.e. writing a command at the Matlab(R)
command prompt 7 >>".

e Via a function written in a file and called from the command prompt.
This technique will be illustrated below.

e Via a script file. A script file is a series of commands collected in a sep-
arate file that can be executed from the Matlab(R) command prompt.
The practicality of a script file is that it invokes many Matlab(R) com-
mands after each other and it can include function calls as well. In
this way, a script serves as a useful way to bundle and keep track of
commands sent to Matlab.

3More about vectors and matrices follow in Section 2.3.
4The "whos” command used in line [4] in the above is naturally not needed to generate
the example plots.

(c¢) K. Nyholm, 2007 page 14

SAA in Fixed Income Markets: A Matlab Based User’s Guide

r1 r2

05 05
] 0
0 5 10 0 5 10
3 r4
3 2
2 1
1 0
] 1
1 -2
] 5 10] 5 10

Figure 2.3: Example of the "subplot” command

2.3 Introductory matrix algebra

This section reviews some basic matrix operations as well as how they are
implemented in Matlab(R). The presentation draws on Lipschutz and Lipson
(2001) and Hamilton (1994)[Appendix 4].

To distinguish vectors and matrices more easily let uppercase letters rep-
resent matrices, and lower case letters represent vectors. Hence, C' would
be a matrix while ¢ would be a vector. The superscript T is used for the
transpose of a matrix or a vector, for example, C” and ¢"would be the trans-
pose of the before mentioned matrix and vector. The transposition operator
reorganises the rows and columns of vectors and matrices: what was before
a column becomes a row after the transposition is invoked. Subscripts, in
connection with matrices and vectors are used to report the dimension of the
object at hand, e.g:

(c¢) K. Nyholm, 2007 page 15

SAA in Fixed Income Markets: A Matlab Based User’s Guide

in the case of a matrix, where n gives the number of rows and k the number
of columns. Hence a column vector will have £ = 1 and a row vector will
have n = 1. Effectively, C7 is:

€11 " Cpa
cT = C'(Tk,n) =
Clk " Cnk
A special matrix is denoted the ”identity” matrix and is defined by:

10 --- 0
01 --- 0
I =
00 --- 1
Similarly, the symbol 71" is used to denote a vector of ones, so1 = [1,1,--- ,1]T.
Mathematical operators are used in their usual guise, however, in the spirit
of Matlab, a ”.” in front of an operator signifies an element-by-element op-

eration. The example below illustrates the difference between element-by-
element multiplication and conventional multiplication.

[1] ©=[1 2 3; 4 56, 7 8 9],

(2] g=[1;1;1];

[3] z1l=Q*q % regular matrix multiplication

[4] z2=Q(:,1).*q % element-by-element multiplication

The result stored in 21 is equal to:

12371 (1#1)+(2%1) + (3%1) 6
z1=14 5 6 I l=| @x«x)+GBx)+(6x1) | =] 15 |,
7891 (7%1) + (8% 1)+ (9% 1) 24

i.e. following the general matrix multiplication rule

Ql,l Q1,2 Q1,3 q1,1
Z = Q2,1 Q2,2 Q2,3 g21 | =
Q3,1 Q3,2 Q3,3 43,1
(Qii*qi1) + (Qr2*q21) + (Qi3*Gsq)
(Q21 % qu1) + (Q22 % q2,1) + (Q23*q31) |,
(@31 % q11) + (@32 % q21) + (@33 % ¢31)

(c¢) K. Nyholm, 2007 page 16

SAA in Fixed Income Markets: A Matlab Based User’s Guide

noting that each row of () is multiplied by the vector q. The dimension of
the result is thus determined by the dimensions of the inputs; in our example

Q(3,3) *4(3,1) = Z(3,1),

and more generally

Qmn) * W) = Zink)-

Hence, matrix and vector dimensions show directly whether an operation is
possible, and what the dimension of the result is going to be.

Let’s look at the calculation of 22 in the example. Here the element-by-
element multiplication is used, so each element in () is multiplied by the same
entry in ¢. Since the dimension of ¢ is (3, 1) we can not perform element-by-
element multiplication for all elements in), because it has dimension (3, 3) .
Therefore it is only possible to perform the desired calculation for a partition
of @ or by increasing the dimension of ¢q. In the above example the former
alternative is chosen (what one chooses to do is naturally dictated by the
purpose of the calculation - the discussion here reflects that the calculations
relate to a purposeless example), by performing the calculations for the par-
tition of Q constituting its first column. A partition of @) constituting its
first column is generated by writing: @ (:, 1), where ”:” refers to all elements,
and 1 to the column number. In other words, the following calculation is
performed:

1 1 1x1 1
2=Q((,1).xq= |4 |.x|1|=|4x1|=]|4
7 1 Tx1 7

Naturally, it is also possible to add and subtract matrices as long as their
dimensions allow it. It is hence a requirement for matrix addition and sub-
traction that the involved matrices have an identical number of rows and
columns, i.e. if we have two matrices Ay,) and By it is necessary that
m = k and that n = [. The following example illustrates this:

5Note, however, that other software packages, e.g. Gauss lets you perform this type
of element-by-element multiplication even if the dimensions do not match. This is done
because the software package is pre-programmed to assume that you want to do the calcu-
lation for all elements and thus automatically expands the dimension of ¢ to match that of
Q. In our example this could be achieved by constructing ¢ as a matrix where ¢ would be
repreated 3 times. This can be achieved in Matlab by e.g. using the "repmat” command.

(c¢) K. Nyholm, 2007 page 17

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[1] A = [1 2 3; 4 5 6],

[21 B = [2 2; 3 3],

[3] A+B

??? Error using == plus

Matrix dimensions must agree.

[11] A = [1 2 3; 4 5 6],

[2] B=[222; 3 3 3];

ans =

ans =

-1 01

Matrix addition and subtraction functions at the level of the individual ele-
ments of the matrices akin to the element-by-element multiplication operator
7. %7 seen above. There are a number of other matrix rules that can come
in handy, these are:

o (AB)T = BTAT
e AB # BA

o if (A7) = A, then A is said to be symmetric, i.e. is a mirror image
around the diagonal

These rules are illustrated by examples. One of the issues mentioned above
is that the feasibility of matrix operations can, to some extent, be evaluated
on the basis of the dimensions of the matrices and vectors involved. The first
bullet is a point in case: if for example A is of dimension (m,n) [i.e. A(mm)}
and B is of dimension (n, k) [i.e. B(n,k)], then the product of AB = C will
be of dimension (m, k). Now, consider the transposition (AB)" = O which
will have dimension (k,m). One way to create a result having this dimension

(c¢) K. Nyholm, 2007 page 18

SAA in Fixed Income Markets: A Matlab Based User’s Guide

T
(n,m

(k,m), as it should have. This intuition can be further helped by example
calculations in Matlab(R).

is to perform the calculation: Bg"l;m) x A) which exactly has dimension

[1] A = [1 2 3; 4 5 6;7 8 9],

[21 B = [2 2;, 3 3; 4 4],

[3] C=(a*B)

C =

20 20

47 47

74 74

(4] c

ans =

20 47 74

20 47 74

[5] B’ *A’

ans =

20 47 74

20 47 74

It is noted that in Matlab(R) the sign used to transpose a variable is -, so
our text-notation: BT becomes: &' in Matlab(R).

An argumentation similar to the one above shows the correctness of the
second bullet point, namely that AB # BA. For non-square matrices, this
proposition can be confirmed simply by looking at the dimensions of the two
sides of the non-equality sign. For square matrices we show it by example:
[1] A = [1 2 3; 45 6;7 8 9];

[21 B=[222; 33 3; 4 4 4];
[3] C=A*B

C =

20 20 20

47 47 47

74 74 74

[3] D=B*A

D =

24 30 36

(c¢) K. Nyholm, 2007 page 19

SAA in Fixed Income Markets: A Matlab Based User’s Guide

36 45 54
48 60 72

In Matlab(R) it is possible to work with partitions of matrices. In the
example above a partition of) was taken, namely the first column. Other
partitions are made in similar ways. It is also possible to refer to individual
elements of matrices or clusters of elements by specifying the column and
row numbers that you are interested in. The following examples illustrate
this.

[1] 9 = [1 2 3; 456, 78 9];

[2] r1 = Q(2,:); % selects the second rows of matrix Q
[3] r2 = Q(3,2); % selects the 3rd row and 2nd column element
[4] r3 = Q(1:2,3); % selects the 1st and 2nd elements in column 3

The results of this example, given the matrix @), are:

rl=[4 5 6]

r2 =28

- [2)

2.4 Organising data

It is sometimes useful to store the results generated by Matlab(R) in a com-
pact fashion, either when organising the input and output to and from func-
tions®, when running simulation studies, or simply as a convenient way of
organising data. As hinted in the learning objectives in the introduction to
this chapter, there are several ways of doing this. Here two such ways are
illustrated: (i) in a structured variable and (ii) in a 3-dimensional matrix.
Concerning (i), a structured variable is an extremely powerful construct
akin to a tree-structure, where the trunk of the tree is the name of the
structured variable and the branches and leaves of the tree are sub-variable

6This will be demonstrated later on.

(c¢) K. Nyholm, 2007 page 20

SAA in Fixed Income Markets: A Matlab Based User’s Guide

names and values. Imagine that we want to organise the data used in the
above example in a structure variable denoted by Sum_data. Then variable
names and values can be added to this structure in the following way:

[3] r2 = Q(3,2);

[4] r3

0(1:2,3);

[5] Sum-data.Q = Q;

[6] Sumdata.rl = rl;

[7] Sumdata.r2 = r2;

[8] Sumdata.r3 = r3;

It is now possible to investigate the content of the structured variable Sum_data
by writing:

Invoking the above command displays the variables contained by the struc-
ture named Sum_data.

As a complement to storing data in a 3-dimensional matrix it is possi-
ble to use an indexed structured variable. Say, for example, that a matrix
of output values is generated many times, as it is often the case in sim-
ulation studies, and let j be a counter-variable that tracks the simulation
number. The following example illustrates the use of 3-dimensional matrices
and indexed structures as output containers. The choice of method depends
on individual preferences, although the use of indexed structure variables is
more flexible because the dimension of the data matrix that is being stored
does not necessarily have to be identical from iteration to iteration.

[1] clear all;

[2] for (j=1:10)

[3] rdim = floor (rand()*10)+1;
[4] ex.datl = randn(rdim,5);
[5] ex_dat2 = randn(5,5);

[6] struct.A{j} = ex.datl;

[7] Mat3D(:,:,]j) = ex-dat2;

[8] end

(c¢) K. Nyholm, 2007 page 21

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Naturally, the above example is of little practical use, however it serves
the purpose of illustrating the different options that can be used to store
information generated while conducting e.g. simulation studies. It is a matter
of individual preferences which method to choose if the dimension of the
output matrices is identical from iteration to iteration. If the dimension
varies from iteration to iteration, the simplest choice is to use the structured
variable.

In the above example, the structure variable ” struct” has just one variable
attached to it, called ”A”. In principle, we could thus have used ”struct”
by itself, but for illustrative purposes an additional level is added to the
structure. 10 iterations are conducted as determined by line [2], hence the
counter variable j runs from 1 to 10. Line [3] defines the dimension of the
rows of the output matrix as a random number between one and 10. The
function floor(z) rounds the elements of z downward to the nearest integer;
the mirror image of floor(z) is ceil(z) which integer-rounds the elements of
z upward: in effect, floor(1.5) = 1.0 and ceil(1.5) = 2. It is recalled that the
function rand() generates uniformly distributed random numbers between 0
and 1, while randn() generates normally distributed random numbers. Line
[4] allocates the matrix of random numbers, of a random row-dimension,
to the variable ex_datl. Line [5] generates further output, however, here
the dimension is fixed to be five-by-five. Lines [6] and [7] store the output
information is a structure and a 3-dimensional matrix, respectively. It is
now possible to inquire the content of the output matrices. For example,
invoking the command ”struct.A{4}” and "Mat3D(:,:,4)” will print the
content of the 4’th iteration. In particular, the 3-dimensional ”container”
is organised as follows: Mat(nRows, nCols, nDepth), where Mat(nRows,
nCols) correspond to a normal (2-dimensional) matrix having nRows rows
and nCols columns. The third entry nDepth refers to how many of the
2-dimensional matrices that are stored next to each other.

2.5 Creating functions

All the calculations performed above were done in ”command line” mode.
This means that expressions were created and sent one-by-one to Matlab(R)
and executed in the order they were sent. Using Matlab(R) in this way is like
having a very powerful pocket calculator. Similar to the functions that can

(c¢) K. Nyholm, 2007 page 22

SAA in Fixed Income Markets: A Matlab Based User’s Guide

be written and stored in more advanced pocket calculators, Matlab(R) also
allows for programs to be created: in Matlab(R) terminology such programs
are called functions. Functions are for example useful when a given task
has to be performed several times. Rather than writing the instructions to
Matlab(R) as individual lines, as one would do in command line mode, the
instructions can be collected in a function.

Before writing a function it is necessary to look at some of the building
blocks that can be used to create functions. These are used to do conditional
branching, i.e. to do something specific if certain criteria are fulfilled, and to
loop, i.e. to repeat a set of functions a given number of times.

2.5.1 Branching and looping

Branching is needed when a given set of instructions are to be performed
only if certain criteria are fulfilled. Functions and programs/scripts can be
branched by the use of ”if” and ”case” statements. ”case” is useful in the
event that a given known number of possible branches exist, while ”if” is a
more universal branching structure. The generic forms of these statements
can be seen in Matlab(R) by typing:

For convenience, they are repeated below along with the relation operators:

Operator Explanation

< <= Less than, Less than or equal to

>, >= Greater than, Greater than or equal to

== Equal to (not to be confused with ”=" that assigns a value)
= Not equal to

- Not

The ”if” statement has the following structure:

(c¢) K. Nyholm, 2007 page 23

SAA in Fixed Income Markets: A Matlab Based User’s Guide

if expression
statements
elseif expression
statements
else
statements
end

and the "case” statement has this structure:

switch expression

case expression_A
statements

case {expression_B, expression_C}
statements

otherwise
statements

end

Looping can be done in Matlab(R) by the use of "for” and ”while” state-
ments. The former statement is often used when a set of statements are to
be executed a known number of times, and the ”while” statement is used to
loop as long as a given set of criteria are fulfilled. The generic structure of
these statements are given below.

"for” structure ”while” structure

for (variable=1:step_size:N) while (variable evaluated against expression)
statements statements

end end

In the "for” structure the ”variable=1:step_size:N” denotes the counting part
of the loop, and should be read: for variable equal one to N in steps of
step_size. As seen above the default value for ”step_size” is one, and the
"step_size” can then be omitted if the user wants to apply a value identical
to one, as it is seen in the examples above.

(c¢) K. Nyholm, 2007 page 24

SAA in Fixed Income Markets: A Matlab Based User’s Guide

2.5.2 An example of a simple function

A function typically consists of three parts: the header, which specifies the
name of the function, the input and output arguments, and the keyword
”function”, which tells Matlab(R) that the following is a function; an expla-
nation of how to use the function and what the function does; and finally,
the instructions that together define the function. Below is an example of
a simple function that generates a plot of random numbers, where the user
specifies the dimensions of the data to be included in the plot.
At the Matlab(R) prompt type:

This opens the Matlab(R) editor window that can be used to generate func-
tions and to store them. Make a directory on the harddisk where you want
to store your programs and functions and remember to include this folder in
the Matlab path. One way to do this is to type:

at the command line. This allows you to browse and add the desired path(s)
using a menu-driven tool. Path(s) can naturally also be added directly from
the command prompt.

We are now ready to make a function. In the edit window type the
following and store it in the directory you have made and added to the
Matlab(R) search path. Always store the function in a file that has the same

name as the function: in our case that is "EX_plot.m”".

[1] function [] = EXplot(zz,yy,xx)

[3] % Function that plots 2 and 3 dimensional graphs
[4] % on the basis of user input

[51 %

[6] % input

[7] % zz - data to be plotted (nObs-by-nSeries)

"As above, the numbers in brackets to the left in the function text should not be
typed. These represent line-numbers and are shown to the very left in the Matlab(R)
editor window.

(c¢) K. Nyholm, 2007 page 25

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[8] % yy - y axis data (nObs-by-1, or left empty for 2D plot)

[9] % xx - x axis data (nSeries-by-1)

[10] %

[11] if (nargin==3)

[12] figure

[13] surf (xx,yy, zz)

[14] elseif (nargin==2)

[15] figure

[16] plot (yy,zz)

[17] else

[18] disp('please provide data for plotting’)

[19] end

A short description of the function £ X _plot is provided: line [1] contains the
name of the function, and the input arguments zz, yy, xz; these are given in
"reverse” order to facilitate plotting of both 2D and 3D graphs. The function
does not return any value to the user; this is seen by the empty output
argument || after the function keyword. Lines [2]-[10] contain the header of
the function, which outlines how the function can be used, what the inputs
are and what the output is. Each line in the header part is preceded by the
"% character. This indicates, as mentioned in Section 2.2, that these lines
constitute user-help text which will be printed if a ” help EX _plot” command
is invoked at the Matlab(R) command line. Lines [11]-[19] constitute the
main part of the function. Line [11] checks if exactly three input arguments
are supplied by the user. The command "nargin” is a Matlab(R) built-in
function that counts the number of input arguments. In our example the
user can specify three or two inputs, depending on whether a 3D or a 2D
graph is supposed to by printed. If three arguments are supplied, and if they
are supplied in the correct order, then a 3D plot will be made, following line
[13] using the built in Matlab(R) function for surface plotting: surf. Here,
"the correct order” refers to the ordering of the input so that the dimensions
match the help-text of the function. Line [12] opens an empty figure window.
This only ensures that the function does not overwrite an existing plot if such
a plot is open at the time the function is executed. Line [14] checks if two
input arguments are provided, and lines [15]-[16] subsequently constructs a
2D plot. If less than two inputs are given, line [18] prints an error message
to the user.

(c¢) K. Nyholm, 2007 page 26

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Functions can also be defined as ”in-line functions”, i.e. within a script
that does more than just defining the function of interest. This can save space
and when applicable it facilitates generation of more compactly written code.
An example of an in-line function is given below:

[1] fx = @(k,a,b,x) k+a*x+b*x."2;

[2] x = (-10:0.1:10)";

[3] h = £fx(2,0.3,0.5,x%);

[4] plot(x,h);

Line[1] defines an in-line function of three parameters k, a, b, and the dataset
x. The function is called fx and @ is the keyword that makes Matlab(R)
understand that the user now wishes to specify an in-line function. Once the
function is defined, either via the command line window or via a script, it
can be called with different arguments. Note that line [1] uses the element-
by-element squaring, i.e. the power function ”"” is preceded by a ”full-stop”
sign to form ”.””. Line [2] defines the x-variable and line [3] calls the function
fx with some example arguments and stores the outcome in the vector h.
Line[4] plots h against x.

2.5.3 Calling functions in Matlab(R)

There are basically three ways in which a user defined function can be used
in Matlab(R). Firstly, it can be called from the command prompt to generate
the desired output. This is done in the following way:

>> |outputs] = function-name(inputs).

In this case the structured variable or the output arguments contained in
[outputs] will exist in the Matlab(R) workspace. An example of this is the
execution of the above code for the generation of 2D /3D plots. This function
can be called from command line by invoking:

>> H — EX.plot(zz,yy,xx)

or by

>> EXplot(zz,yy,xx)

the latter is possible because the function only generates a figure plot and
does not return any output arguments. Secondly, a user defined function

(c¢) K. Nyholm, 2007 page 27

SAA in Fixed Income Markets: A Matlab Based User’s Guide

can be called from within another user defined function, program or script
file. Calling a function in this way is similar to invoking it from command
line mode; the difference is that in the former case the output arguments
of the function can be used directly within the function, program or script
from which it is called. Thirdly, a user defined function can be called from
a built-in Matlab(R) function. For example, if a user has written a function
that calculates the value of a given model conditional on a given set of pa-
rameters, and has an interest in estimating the values for the parameters that
maximises or minimises this function, then the function can be called from
Matlab’s built-in function-minimisation routine fmincon. In the following
chapters we will see numerous examples of this. Here only an appetiser is
given by showing the two function "handles” that Matlab acknowledges. As-
sume that the function of interest is called my_fun, defined either as an
in-line function or as an external function, then this function can be passed
to fmincon in either of these ways:

[...] = fmincon('my_fun', ...)

or
[...] = fmincon(@Qmy_fun, ...).

2.6 The linear regression

This section shows how the concepts presented above can be used in practice.
Two examples are presented: the first concerns the solution to the ordinary
least squares (OLS) regression calculated by matrix algebra and the second
shows how the same results can be obtained via a function that minimises
the sum of squared residuals.

2.6.1 The basic setup

A linear relationship between variables, one variable y depending on other
variables x;8, can be formulated as:

y="by+b*xx1 +by*xxo+ ... +¢.

or when collected in matrix form:

(c¢) K. Nyholm, 2007 page 28

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Yn,1) = X(n,k) * b(k,l) + E(n,1); (2.1)
where X = [1 x1 x5 ...] collects the original data and 1 is a vector of ones
that accounts for the constant in the regression. ¢ is an error term, that is
the part of Y that cannot be explained by the right-hand-side variables. For
the linear regression to produce reliable estimates,® it is, among other things,
required that:

e the expected value of the error term is 0; otherwise the intercept term
will be biased.

e the error terms are all drawn from the same distribution and have
similar variances and are not correlated with one another; otherwise the
variance of the parameter estimates will be biased, i.e. the variance of
will be producing unreliable inference about the estimated parameters.

e the independent variables collected in X are not linearly related, i.e. no
exact linear relationship can exist between them; otherwise the problem
of multicollinearity prevails and it affects the standard errors on f.

Note that 3 is used to represent the estimate of the true b, i.e F' [3] = b. The
solution to equation (2.1) by Ordinary Least Squares (OLS) proceeds in the
following manner:

e=Y — Xb.

The objective is to minimise the sum of squared residuals, i.e to minimise

ele, where e is the empirical counterpart of :

ee = (Y -XB)" (Y —Xp)
= (YT-5"X") (Y — XP)
= YTy —YTXB - 8TXTY + 8T X" X5,

since an) * Xn gy * ﬁ(m) is a scalar, and a scalar is equal to its transpose,
we have that (YTXB)T = BTXTY, so:

8Reliable in this context mean BLUE, i.e. Best Linear Unbiased Estimates.

(c¢) K. Nyholm, 2007 page 29

SAA in Fixed Income Markets: A Matlab Based User’s Guide

ele=YTYy —287XTY + pTXT X .

To find the minima we differentiate with respect to (3, set the result equal to
zero, and solve for 5.

=0-2X"Y +2X"X3 =0,
which implies that:

XTXp=XTY.
When it is assumed that the columns of X do not exhibit exact linear rela-
tionships, i.e. when X has full rank, the inverse of (X rx) exists and (can
be found as:
B=(XTXx)" XTY.
A short-hand way to obtain this relationship is by pre-multiplying (2.1)
by X7 and substituting in the estimates of ¢ and b:
XTy = XTXB + XTe,
since F [X Te} = 0, we obtain:
Xty = XTXp,
and
8= (XTX)" XY

It is now clear how the values for 3 can be calculated. It is, however, also
interesting to see how precise these estimates are, once actual data is used.
To this end the variance-covariance matrix of 5 has to be derived. Since
Y = Xb+ e, we can write:

B o= (XTX)XTY = (XTX) " XT(Xb +e)
= (XTX)T XTXb+ (XTX) T XTe
— b+ (XTX) T XTe,

(c¢) K. Nyholm, 2007 page 30

SAA in Fixed Income Markets: A Matlab Based User’s Guide

S0,
B—E[f] = (XTX) " X,

and squaring this result generates the variance-covariance matrix for the

estimated parameters:

var[f] = E[(B-E[B)(B—EB)"]
— E [(XTX)‘1 XTee" X (XTX)‘1]
— (XTX) ' XTo?Ix (XTX)
— 2 (XTX).

The error term variance o2 is unknown in most practical applications and

thus needs to be approximated/estimated. This is usually done in the fol-
lowing way:

— 2 T —1 UTU T —1

var [f] = 2 (X' X) =5 k(X X)
where, u = Y — X3, i.e. using the actual residuals obtained from data to
approximate the error term variance. N is the total number of observations
and k£ the number of estimated parameters.

2.6.2 Maximum likelihood

In real life the estimation challenges that one faces are typically more complex
than the OLS regression illustrated above. To handle such situations the
likelihood principle can be used. A general idea here is that the residuals
from the model are assumed to be generated by a known distribution, e.g.
a normal distribution, and by solving the chosen density function for the
population parameters in an iterative fashion, using an optimiser function,
the desired parameter estimates of the model and the distribution can be
found. To illustrate, below we sketch how the OLS regression can be solved
using the maximum likelihood (ML) estimation technique.

Y =X+ u,

the residuals are assumed to be normally and identically, independently dis-
tributed (Niid), which ensures comparability to the previously derived ana-
lytical solution to the OLS regression:

(c¢) K. Nyholm, 2007 page 31

SAA in Fixed Income Markets: A Matlab Based User’s Guide

U ~ N(O,02I),

and we therefore need the normal density:

T
L (32,5) = (2%52)_T/2 exp [—2%2 Z (y; — xjﬁ)2])
=1

Functions that involve exp are non-linear and are hence difficult to optimise.
It is much easier to optimise log(L) instead of L, and this is legitimate be-
cause the parameters that optimise L also optimise log(L). For these reasons
likelihood optimisation involves the log likelihood function:®

S

1

T
logL———ln 27?5 ——2 —xjﬁ

To put the principle into practice one needs a function that calculates the
residuals and the following log likelihood function value, and a software that
can minimise the function in an iterative fashion conditional upon the set of
parameters describing the problem at hand, i.e. (s%,3). Such an ”optimisa-
tion” approach is also useful if parameter constraints are applied, e.g. if fi-
nancial theory stipulates a certain relationship between the variables included
in the regression. It is often relevant to test such parameter constraints em-
pirically. An analytical solution to the OLS regression will quickly become
quite involved, if possible at all, in the face of such constraints; while the
empirical approach described above can easily accommodate constraints on
individual parameters and groups of parameters.

2.7 Some estimation examples

In this section we use the two estimation principles outlined above. The data
are contained in the Excel workbook called "Data”. We are going to use one
of the interest rate series contained in the sheet 'Rates’. Load the data into
the Matlab(R) workspace by invoking:

[1] R = xlsread(’ [PATH]\Data’ ,'Rates’);

9Matlab(tm) uses the function log(z) to denote the natural logarithm of .

(c¢) K. Nyholm, 2007 page 32

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[PATH] refers to the directory path where the data is located e.g. 'C:\myfolder’.
In order to construct the variables to be used in the regression, the matrix R
needs to be modified. The first row of R contains the maturities at which the
rates are observed. In the current example we focus only on the 3 months
rate, i.e. on the first column of R and hypotheses the following relationship.'°

rr=ma4a*xr_1+bxri_g+cxri_s+u.

As can be seen from the regression equation the right-hand-side variables
are all lagged versions of the left-hand-side variable. Such a regression is
also called an autoregression, which is defined by the number of lags that
are included. In our case three lags are included and the regression is hence
termed an autoregression of order 3, in short AR(3). Naturally this concept
generalises to n lags, and hence to an AR(n), and to k variables, in which
case the regression is called an vector autoregression, in short VAR.!!

To construct the left- and right-hand-side variable from R the following
can be invoked:

[1] r = R(2:end,1); % allocates the 3m rate to variable r
[2] rLag3 = r(l:end-3,:); % creates the 3.lag

[3] rLag2 = r(2:end-2,:); % creates the 2.lag

[4] rLagl = r(3:end-1,:); % creates the 1.lag

[5] Y = r(4:end,:); % adjusting r

[6] X = [ones(length(Y),1) rLagl rLag2 rLag3 1;

It is worth remembering that the data is ordered so that the last observation
is the most recent one in calendar time and the first observation is the oldest
observation in calendar time. Given this, the above generates the needed
lagged variables. If data were in reverse order then the lagging of variables
would have to be reversed as well. The vector of ones included in line [6]
accounts for the constant in the regression. Armed with the variables, the
only remaining task is to apply the OLS formulas derived above. This is
done below:

10Tt should be emphasised that the shown regression serves as an example only. It is
not claimed that the specification is optimal in any sense or even that it fulfils statisti-
cal requirements that adhere to linear regressions in general. No tests are conducted to
corroborate the chosen specification.

HThe VAR abbreviation should not be confused with value-at-risk (VaR).

(c¢) K. Nyholm, 2007 page 33

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[1] B.hatl = pinv (X’ *X) *X'*Y, % calc the beta estimates
[2] B.hat2 = X\Y; % calc the beta estimates
[3] u = Y-X*B_hat2; % calc residuals
[4] s = sgrt(diag ((u’*u)/(length(Y)-4)*pinv(X’'*X))); % calc of std errors
[5] [B_hatl B_hat2 s B_hat2./s]
ans =
0.086784 0.086784 0.035517 2.4434
1.3938 1.3938 0.039386 35.388
-0.612 -0.612 0.063933 -9.5725

0.20254 0.20254 0.039305 5.1528

This shows that the parameter estimates of B_hatl and B_hat2 are identi-
cal.'? The third column of ans shows the standard deviation of the parameter
estimates and the last column the t-stat. The latter shows that all parameter
are significantly different from zero at any reasonable level of confidence. A
metric often applied to analyse the goodness-of-fit of a regression is called
R?, and is defined as the ratio of the sum of squares of the fitted value to the

sum of squares of the observed values, i.e:'3
R BTXTXp
YTy

We will now redo the regression calculations using the principle of Maxi-
mum Likelihood estimation. For this purpose it is assumed that the residuals
from the regression are normally distributed so that the density function of
the normal distribution can be used, as illustrated above. Matlab(R) uses an
iterative approach to solve such problems implemented through the functions
fmincon and fminunc. The first handles constrained problems, i.e. where
the parameters are restricted to lie within certain bounds or where a certain
relationship between the variables need to be fulfilled. The latter handles
optimisation problems without any types of constraints. A schematic pre-
sentation of the steps that need to be undertaken using Maximum Likelihood
is:

1) Generate a guess for the parameters to be estimated;

12Matlab(tm) has a built in function ”\” called ”left matrix divide” which can also be
used to solve the OLS regression.
13This is called the uncertered R2.

(c¢) K. Nyholm, 2007 page 34

SAA in Fixed Income Markets: A Matlab Based User’s Guide

2) Calculate the predicted values based on the guessed parameter values,
i.e. insert the parameter guesses in the equation and apply data,;

3) Calculate prediction errors by subtracting 2) from the observed left-
hand-side variable

4) Insert the errors in the log-likelihood function which yields the log-
likelihood function value

After the initial guess in (1), the steps (1)-(4) are repeated by the optimi-
sation module in Matlab(R), where (1) is generated by Matlab(R) in a way
that leads to the optimisation of the log-likelihood function value. All that
the user has to do is to (a) write a function that returns the errors in (3)
and supply the initial guesses mentioned in (1). This process is shown below
by the use of a Matlab(R) script. A script file is simply a consecutive list
of Matlab(R) commands similar to the ones from the examples above. In
the examples, the instructions to Matlab(R) were invoked in the command
line, i.e. one instruction at a time. In a script a series of commands can
be collected and executed automatically by Matlab(R). To start writing the
script we first initialise the MatLab(R) editor:

This opens a Matlab(R) editor window. Save the empty script file in a folder
on your chosen drive and make sure to include the path in the Matlab(R)
path structure.'* The following script demonstrates the likelihood principle
applied to the linear regression.
[1] % --- Generating variables ---

[2] R = xlsread(’ C:\A_proj ects\A_book\Data\Data’ ,'Rates’);

[3] r = R(2:end,1); % allocates the 3m rate to variable r

[4] rLag3 = r(l:end-3,:); rLag2 = r(2:end-2,:); rLagl = r(3:end-1,:); % lags
[5] Y = r(4:end,:); % adjusting r

[6] X = [ones(length(Y),1) rLagl rLag2 rLag3];

[7] % --- Initial and auxiliary variables/parameters ---

[8] T = length(Y);

4This is done by clicking on the "File” and ”Set path” menus in the Matlab(tm)
command window. Add the chosen path by browsing for it and save the path afterwards.

(c¢) K. Nyholm, 2007 page 35

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[9] B.O = [.10; 1.40; -0.70; 0.20; .50],;
[10] % --- Loglikelihood function ---

[11] 1InL = @(B-0) T/2*log(2*pi*B.0(5,1))+...

[12] 1/(2*%B-0(5,1)) *sum((Y-X*B.0(1:4)).72);

[13] % --- setting up the optimisation inputs ---

[14] options. = optimset (’LevenbergMarquardt’, ‘on’, ’'LargeScale’, ‘off’, ’'Display’,
'off’);

[15] 1b = [-100; -100; -100; -100; 0.001];

[16] ub = [100; 100; 100; 100; 100];

[17] B-hat = fmincon(1nL, B.O, []I, []1, [l, [I, 1b, ub, [], options.)

This is a bit more involved compared to the closed form OLS calculations,
however, the benefit of doing so is that the likelihood principle is generally
applicable to other situations where explicit solutions do not exist, as also
mentioned above. Lines [1]-[6] simply regenerate the data for the variables
included in the regression. Line [8] calculates the number of time-series
observations in the data, and line [9] specifies the starting values for the
parameters to be estimated. Note that the ordering of the parameters is
as above. A fifth variable is included which accounts for the variance of
the residuals. When doing maximum likelihood optimisation it is almost
always the case that the error-term variance is estimated along with the other
parameters. Lines [11]-[12] calculate the likelihood function value.!® Note
that minus the log likelihood is calculated. This is done because fmincon
is designed to find the parameters that minimise the function value. If
the built-in optimiser was designed to find parameters that mazimise the
function value, we would not multiply the objective function by minus one.
Also note that line[11] uses the so-called function handle ”"@” to define the
likelihood function within the script. Alternatively an external function could
be written to calculate the likelihood function as shown in Section 2.5.2.
Line [14] specifies which optimiser principle to use and lines [15]-[16] specify
the lower and upper bounds for the parameters to be estimated. The only
parameter that needs to be bound in our example is the variance. The lower
bound for this parameter is set equal to 0.001 because a variance cannot
be negative, while the upper bound is not constraining. Finally, line [17]
contains the call to Matlab(R)’s built-in optimiser function, which solves

15This way of writing inline functions only works from Matlab(tm) version 7 on onwards.
Alternatively, an inline function has to be defined by the ”inline(...)” command.

(c¢) K. Nyholm, 2007 page 36

SAA in Fixed Income Markets: A Matlab Based User’s Guide

the regression model and puts the optimal parameter values in the variable:
B_hat. Note that line [17] does not end with a semicolon. This means that
the result is printed to the screen. Running the above script by writing
”[script name|” and pressing enter in the Matlab(R) command line gives the
following output:

[1] EX_likeli.l

Optimization terminated: magnitude of directional derivative in search

direction less than 2*options.TolFun and maximum constraint violation

is less than options.TolCon.

No active inequalities.

B_hat =

0.086791

1.3938

-0.61198

0.20252

0.17376

Line [1] contains the command that executes the script. Here, we have called
the script 7 EX _likeli_1”. Evidently, the estimated parameters are identical
to the ones obtained by the closed form OLS expressions derived above. The
standard errors on the parameter estimates can be calculated similarly by:
[1] s = sgrt(diag(B-hat (5,1)*inv (X’ *X)))

s =

0.035403

0.039259

0.063727

0.039179

If the sample size is sufficiently large, it can be shown that the maximum
likelihood estimates are distributed as:

G~ N(8,TUNT).

This means that the standard errors on the parameter estimates can be calcu-
lated from the inverse of the I N matrix, which is also called the information
matrix. Here T' denotes the number of observations and S denotes the true

(c¢) K. Nyholm, 2007 page 37

SAA in Fixed Income Markets: A Matlab Based User’s Guide

parameter values. It turns out that Matlab(R) can produce an output that
helps in this connection. In fact, fmincon can be called with additional out-
put arguments of which some can be used to approximate the information
matrix. This is done in the following way:

[1] [B-hatl,Fval,Exitflag,Output,Lambda,Grad,Hess] = fmincon(1lnL, B-0, [], [1, (],
1b, ub, [], options.);

where the relevant output is Hess, being the Hessian matrix i.e. the matrix
of second derivatives to the objective function evaluated at the optimum with
respect to the estimated parameters. Hess can be used to proxy the infor-
mation matrix when dealing with a minimisation problem since an estimate
for the information matrix can be constructed by:'6

IN =T Hess.
When using IN for IN the standard errors of B are given by:

[1] s_hess = sqgrt(diag(inv(Hess)))

s-hess =

0.037156

0.038585

0.06508

0.040874

0.0098444

Minor discrepancies between s and s_hess are observed. These stem from
approximation errors of Hess to the information matrix and from the ap-
proximative nature of the distribution of 5 as indicated above.

2.8 A brief introduction to simulations

Many problems in finance do not have explicit solutions. In these cases, a
simulation based solution strategy often proves to be helpful. For example,
most asset and liability models rely on simulation based solutions; simula-
tions are also used in the calculation of advanced risk measures for market

16Minus the hessian should be used for maximisation problems.

(c¢) K. Nyholm, 2007 page 38

SAA in Fixed Income Markets: A Matlab Based User’s Guide

and credit risk; pricing of complex options relies heavily on simulations; and
even portfolio optimisation can benefit from simulation based solutions. Sim-
ulation models can also be used as a back testing tool.

Only a very simple simulation example will be shown in this section. The
underlying principle of this example remains the same also in more involved
applications.

Remember the parameter estimates from the OLS regression above:

Parameter Estimate Standard deviation

k 0.087 0.037
a 1.394 0.039
b -0.612 0.065
c 0.203 0.041
o? 0.174 0.010

And, assume that the parameter estimates are uncorrelated, i.e. orthogonal
to each other, and that they are normally distributed. This means that we
can simulate the regression equation:

7}:k?—f‘a*’/“t_l+b*7“t_2+6*7“t_3+ut,

using the estimated parameters and their standard errors. Hereby simu-
lated sample paths for r; can be generated taking into account parameter
uncertainty as well as the uncertainty that stems from the innovations to the
process as represented by the error term. Often in simulation applications
only a new innovation term is generated; either on the basis of an assumed
distribution, or it can be regenerated from the observed errors (a technique
doing this is referred to as: bootstrapping). In both of these cases the pa-
rameter uncertainty is ignored. However, there is no particular reason why
to ignore parameter uncertainty; in fact, it all depends on the problem that
one sets out to solve.

The current example is fairly general as it allows for both parameter
uncertainty as well as uncertainty stemming from the innovation term. In
order to generate the simulation, the following steps need to be completed:

1) draw innovations from the appropriate distribution;
2) generate parameter-value draws, also from appropriate distributions;

3) insert the generated parameters into the equation to be simulated,;

(c¢) K. Nyholm, 2007 page 39

SAA in Fixed Income Markets: A Matlab Based User’s Guide

4) feed innovations through the equation.

We show below how this can be done in Matlab through a script called
"EX_sim”.

[1] % --- load data ---

[2] R = xlsread(’ C:\A_projects\A_book\Data\Data’ ,'Rates’);
[3] rorg = R(:,1);

[4]1% --- Inputs ---

[5] b = [0.087; 1.394; -0.612; 0.203; 0.174 1;

[6] s = [0.037; 0.039; 0.065; 0.041; 0.010 I,

[7] init_ = [0.64; 0.76; 0.97, -0.097];

[8] nObs = 622;

[9] nSims = 500;

[10] Res = zeros(nObs,nSims);

[11] bSim = zeros(5,nSims);

[12]% --- Calculations ---

[13] for (j=1:nSims) % loop over simulations

[14] b_hat = inf.*ones(length(b),1);

[15] while (sum(b.hat(2:4,1))>=1)

[16] b.hat = b + s.*randn(5,1);

[17] end

[18] Y = zeros(nObs,1);

[19] Y(1:3,1) = init_(1:3,1);

[20] u = 0 + sqgrt(b-hat(5,1)).*randn(nObs,1);

[21] u(4,1) = init_(4,1);

[22] for (k=4:nObs); % loop over observations
[23] Y(k,1) = b.hat(1,1) + b-hat(2,1)*Y(k-1,1) +
[24] b-hat (3,1) *Y (k-2,1) +
[25] b.hat (4,1)*Y (k-3,1) + u(k,1);
[26] end

[27] Res(:,3j) = Y,

[28] bSim(:,j) = b_hat;

[29] end

[30]% --- generate stats ---

[31] bSim.m = mean (bSim’)’;
[32] bSim.s = std(bSim’)’;

[33] disp(’original and simulates parameters...’)

(c¢) K. Nyholm, 2007 page 40

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[34] disp([b bSimm])

[35] disp(’original and simulates standard errors...’)
[36] disp([s bSim_s])

[37]% --- plot simulated and orginal series ---

[38] figure

[39] plot(Res)

[40] hold on

[41] plot(r-org, 'k-',’'LinewWidth’,2)

[42]

oe

--- plot distribution of simulated parameters ---

[43] figure

[44] x.1 = (bSimm(1,1)-4*bSim.,s(1,1) :bSim.s(1,1)/100:bSimm(1,1)+4*bSims(1,1))’;
[45] pdf-1 = normpdf (x-1, bSimm(1,1), bSims(1,1));

[46] x2 = (bSimm(2,1)-4*bSim.s(2,1) :bSim.s(2,1)/100:bSimm(2,1)+4*bSim.s(2,1))’;
[47] pdf-2 = normpdf (x-2, bSimm(2,1), bSim.s(2,1));

[48]1% --- subplot 1

[49] [templ bin] = hist(bSim(1,:)’,15);

[50] hist-obs = templ’./nObs./(bin(1,2)-bin(1,1));

[51] subplot(1,2,1), bar(bin’, hist_obs), title(’Distribution for the constant’);
[52] hold on

[53] plot (x-1,pdf_1);

[54]1% --- subplot 2

[55] [templ bin] = hist (bSim(2,:)’,15);

[56] hist.obs = templ’./nObs./(bin(1,2)-bin(1,1));

[57] subplot(1,2,2), bar(bin’, hist_obs), title(’Distribution for 1st. AR parameter’);
[58] hold on

[59] plot (x-2,pdf_2);

The script generates two types of results. First it prints the original parame-
ter values, and the mean of the simulated parameter values; then it plots the
original data, simulated data trajectories and distributions for the first two
simulated parameters (i.e. the constant and the first autoregressive param-
eter). This latter plot also contains a normal probability density function
(pdf) fitted to the mean and standard deviations of these parameters.

[1] EX_sim

original and simulates parameters...

0.087 0.081602

1.394 1.3845

(c¢) K. Nyholm, 2007 page 41

SAA in Fixed Income Markets: A Matlab Based User’s Guide

-0.637 -0.65972
0.203 0.19231
0.174 0.1749
original and simulates standard errors...
0.037 0.03789
0.039 0.037638
0.065 0.056403
0.041 0.037679

0.009 0.0088546

“Walue

-20

1 1 1 1 1 1
i] 100 200 300 400 500] 700
Observation #

Original and simulated data

(c¢) K. Nyholm, 2007 page 42

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Distribution for the constant Distribution for 1st. AR parameter

12

0.1 0 0.1 0.2 0.3

Simulated parameter distributions.
The Matlab(R) program falls in three parts. The first part from lines

[1]-[11] loads data and takes user input values for the number of simulations
to be conducted and for the number of time-series observations to be gener-
ated in each simulation. The second part from lines [12]-[29] conducts the
calculations. There is an outer for-loop covering the before mentioned lines
which envelopes all calculations needed to generate one trajectory of the left-
hand-side variable. In side this loop there is another for-loop that starts on
line [22] and ends on line [26], which runs over the number of observations
to be generated. It is within this for-loop that the AR(3) observations are
generated. Finally, the third part of the program, covering the rest of the
lines, generates summary statistics and reports results to the user in table
and graphical format.!”

2.8.1 Generating correlated random numbers

A central component of almost any experiment involving projections on the
basis of an underlying model is that of correlated random numbers. Imag-
ine for example that you want to simulate returns for a set of assets jointly.
Naturally, the trajectories of these assets will be related: their particular co-

I"The reader is invited to investigate the simulation code in more detail in the end-
chapter exercises.

(c¢) K. Nyholm, 2007 page 43

SAA in Fixed Income Markets: A Matlab Based User’s Guide

movements will be defined by the covariance matrix or the correlation matrix
of these assets. A convenient way to generate correlated random numbers is
by the use of the Cholesky decomposition of the covariance matrix. This de-
composition allows for the calculation of the upper triangular matrix U from
a positive definite!® matrix C: a covariance matrix will always be positive
definite. The Cholesky decomposition has the form (see, e.g. Glasserman
(2004, pp.72-73)):

C=U"U. (2.2)

The upper triangular matrix U is useful for generating correlated random
numbers in the following way:

Rire) = N(re) * Ucye)- (2.3)

First uncorrelated random numbers can be generated of the desired dimen-
sion, e.g. n ~ N (0,1). Then these random numbers are "run through”
the Cholesky decomposition to generate the matrix R of correlated random
numbers of the desired dimension, here (r,¢) .

An example illustrates this decomposition:

[1] disp(’The covariance matrix’)

[2] C = [7.9440 7.8265 8.3193 6.8492;
[3] 7.8265 7.7473 8.2614 6.8304;
[4] 8.3193 8.2614 8.8664 7.4661;
[5] 6.8492 6.8304 7.4661 7.1715]

[6] disp(’'Upper triangular from cholesky decomposition’)

[7] U = chol(C)

[8] disp(’Calculating transpose (U)*U’)

[9] disp (U’ *U)

[10] n = randn(500000,4);

[11] R = n*T;

[12] disp(’Covariance matrix of simulated random variables’)

[13] disp(cov(R))

Lines [2]-[5] define the covariance matrix to be used in the simulation; line
[1] is just a print-to-screen command that gives a heading to what is printed

¥The matrix Cpyp is positive definite if w? Cw > 0, where wi,z1) # Oppa)-

(c¢) K. Nyholm, 2007 page 44

SAA in Fixed Income Markets: A Matlab Based User’s Guide

next. Note that line [5] does not end with ”;”. This means that the matrix
C is also printed to the screen. Lines [6]-[7] calculate and display the upper
triangular matrix that is generated by the Cholesky decomposition. Lines [8]-
[9] confirm the results of the decomposition by re-generating the covariance
matrix following (2.2). Line [10] generates 500, 000 standard normal random
draws and organises them in the matrix n of order (nObs,nVars). Line [11]
applies (2.3) to generate R, the matrix of correlated random numbers with
the covariance structure given by C. Lines [12]-[13] calculate the covariance
matrix of R to confirm that the calculations went well, and print the result
to the screen. The following output is generated:

[1] The covariance matrix

[2] C =

[3] 7.9440 7.8265 8.3193 6.8492
[4] 7.8265 7.7473 8.2614 6.8304
[5] 8.3193 8.2614 8.8664 7.4661
[6] 6.8492 6.8304 7.4661 7.1715

[7] Upper triangular from cholesky decomposition

[8] U =

[9] 2.8185 2.77680 2.95170 2.43010
[10] 0 0.19121 0.34073 0.43149
[11] 0 0 0.19487 0.75075
[12] 0 0 0 0.71861

[13]Calculating transpose (U) *U

[14] 7.9440 7.8265 8.3193 6.8492
[15] 7.8265 7.7473 8.2614 6.8304
[16] 8.3193 8.2614 8.8664 7.4661
[17] 6.8492 6.8304 7.4661 7.1715

[18] Covariance matrix of simulated random variables

[19] 7.9243 7.8076 8.2998 6.8362
[20] 7.8076 7.7291 8.2427 6.8181
[21] 8.2998 8.2427 8.8474 7.4542
[22] 6.8362 6.8181 7.4542 7.1677

It can be seen that the covariance matrix calculated from the simulated data
is marginally different from the starting covariance matrix, i.e. by comparing
output lines [3]-[6] to lines [19]-[22]. The pattern of the simulated covariance
matrix is however identical to the original covariance matrix, and this is what

(c¢) K. Nyholm, 2007 page 45

SAA in Fixed Income Markets: A Matlab Based User’s Guide

is important. The minor differences originate from the randomness inherent
in n. If fewer random draws than 500,000 are included in n, the differences
will tend to grow and if more than 500,000 are included, they will tend to
be smaller. It should be emphasised that there is nothing magical about
the number 500, 000; this number is chosen here for illustrative purposes.
In practise, one will often choose to simulate a number that is close to the
number of observations contained in the original data sample used to estimate
C in the first place.

The Cholesky decomposition together with a time-series model are the
fundamental building blocks needed to generate forecasts/predictions.

(c¢) K. Nyholm, 2007 page 46

Chapter 3

Fixed Income Preliminaries

3.1 Introduction

This chapter gives a very general introduction to fixed income markets. It
presents the basic building blocks that we will draw on later on in the text
such as yields and spotrates, and it shows how to calculate the price of bonds.

Learning objectives

Understand the basic building blocks of fixed income markets

Be able to work with yields and spotrates

Know how to price bonds

[to be completed]

3.2 Spot rates and yields

A first principle to get to terms with in finance is that: time has a mon-
etary value. Not in itself, but in the sense that if one has the possibility
to consume today rather than tomorrow, or at another point in the future,
any person (also called an economic agent) has a preference to consume now.
Consequently, agents in the economy have to be rewarded for postponing

47

SAA in Fixed Income Markets: A Matlab Based User’s Guide

consumption. If, in addition, the agents bear risks when postponing con-
sumption i.e. there is uncertainty as to how much future consumption they
receive, an additional compensation in the form of a risk premium applies.
The reason why some agents accept to postpone consumption by e.g. de-
positing money in a bank or through the purchase of financial instruments,
is that other agents in the economy are willing to pay the compensation rate
(the interest rate) to obtain liquid funds (i.e. money). The economy is said
to be in equilibrium, and a common interest rate emerges, when this latter
group of agents (think of banks and firms that issue bonds and stocks to
finance their investment projects) offer an interest rate at which their aggre-
gate liquidity demand is fulfilled. The higher the interest rate offered, the
more agents are willing to postpone consumption, and vice versa. The higher
the interest rate requires, the lower the liquidity demand from firms, and vice
versa. When liquidity demand and liquidity supply meet, the equilibrium is
found, and a single interest rate clears the supply and demand for liquid-
ity, at the particular segment of the yield curve - an argumentation similar
to the above is often presented in the field of macro economics, where only
one interest rate at a given maturity, often the very short end of the yield
curve, is treated. In finance, however, we look at interest rates at different
maturities and it is hence relevant to describe how rates for all maturities
are generated. Several different hypothesis are put forth in this arena and
they are loosely described below:

e The market segmentation hypothesis states that different agents have
different preferences for borrowing or lending in different segments of
the yield curve. For example, central bank investment operations may
be most focused on the short term segment of the yield curve, invest-
ment banks on the medium term and pension funds on the longer term
segments. The demand and supply within each segment determines
the rate that is observed in that particular segment. If one segment is
"under represented” in terms of either supply or demand, prices in this
area will adjust as to attract agents from other segments. It thus im-
plicitly assumed that agents, while having a preference for a particular
segment, can be lured to invest in another segment if the compensation
for switching segment is high enough.

e The expectation hypothesis states that todays’ interest rates (spot
rates) are determined on the basis of what future short rates are ex-
pected to be, and a risk premium; in other words: todays’ yield curve

(c¢) K. Nyholm, 2007 page 48

SAA in Fixed Income Markets: A Matlab Based User’s Guide

is the average of the future realisation of the short rate. In this way,
the 2 year segment of todays’ yield curve is the average of todays’ short
rate and the one year forward rate (plus a risk premium). This argu-
mentation also works in reverse, hence if todays yield curve is upward
sloping, it indicates that the future short rate is expected to increase
(neglecting for a moment that adjustments have to be made for the
risk premia).

e The liquidity preference hypothesis states that agents on average prefer
to invest in short term assets, as this limits their exposure to interest
rate risk. ”Liquidity” is used as a term for how close the asset holding
are to be liquid, in the sense of cash, if the assets are held to maturity.
Longer dated bonds can naturally be more "liquid” than short dated
bonds, in the sense of the word ”liquid” which is usually used in finance,
i.e. how fast an asset can be sold in the market place without having
an impact on the prevailing market quotes. In the former sense of the
word "liquid”, this hypothesis assumes that agents can be convinced
to invest in longer dated securities if they are compensated through a
risk premium so that longer rates are higher than shorter rates.

The interest rate comes in different forms. For example, the real interest
rate is the compensation that offsets the postponement of consumption to the
future, without taking into account that goods tend to increase in price when
time passes (i.e. the inflation rate). The nominal interest rate includes the
real rate and the inflation rate. Interest rates are typically not identical for
different time-horizons (also called maturities). Often the interest rate curve
(also referred to as the yield curve) is upward sloping, reflecting that agents
require a higher compensation rate the longer the consumption is postponed
into the future; however, after a certain point in time agents seem to stop
worrying about the time dimension of the consumption postponement, and
the yield curve hence converges to a certain level. It is almost like the agents
say, well it doesn’t really matter whether I have to postpone my consumption
ten or thirty years - this is the same to me, so I don’t require extra a lot
of extra compensation after year ten.! The reason for this is that agents
react to the discounted value of the future consumption, and the marginal

'Here, ten is naturally just an example and the actual number varies over time and
with the level of interest rates.

(c¢) K. Nyholm, 2007 page 49

SAA in Fixed Income Markets: A Matlab Based User’s Guide

contribution is very small of consumption bundles that fall in the distant

future.?

Figures 3.1 and 3.2 illustrate the time/maturity dimension of interest
rates / yield curves. Figure 3.1 shows the US government yield curve at
three different historical dates, and illustrates some of the generic forms that
yield curves take: steeply upward sloping (May 2004); Inverse (March 1980);
and normally upward sloping (February 1997). Figure 3.2 shows how the US
yield curve has evolved over time since 1953.

March 1980
141 / o

February 19597

A \May 2004

1 1 1 1 1 1
0 50 100 150 200 250 300 350
haturity (months)

Figure 3.1: Yield curve examples on given dates.

Consumption bundles are not directly observed in the financial markets.
However prices of e.g. bonds are, and these prices will hence reflect the
interest rate required by the bond holders. In effect, bond prices can be
used to calculate interest rates. The more actively traded bonds will have
more precisely determined prices (because more agents evaluate them before
trading them) and will thus better reflect the implied interest rate than the
less traded bonds will. It is therefore important to use highly traded/liquid
bonds in the calculation of the market interest rate curve.

2Net present value calculations can confirm this point by the fact that the discounting
function is convex and negatively sloped.

(c¢) K. Nyholm, 2007 page 50

SAA in Fixed Income Markets: A Matlab Based User’s Guide

200

70 B0 00 400 30

Maturity (months) Observation # (time)

Figure 3.2: Example of a yield curve shapes and locations

A fixed rate bond is like a loan: the bond seller promises the buyer to
pay fixed coupons over time, until the bond matures, and when it does the
seller will repay the principal amount borrowed. Bonds can be issued at
different loan-sizes (notional amounts).> For the purpose of this text we
assume that all bonds are issued with a notional amount of 100 (insert your
favorite currency, e.g. Euro) and have annual payments. Before maturity
the price of a bond is determined by its cashflow and the discount factors:

C C C+100
P I S) 3.1
A T R SR R CR T * (3.1)

30ther types of bonds also exist such as floting rate bonds, where the promissed coupon
payments adjust to the current level of rates over time; step-up-bonds where the coupon
is corrected if the credit rating of the bond changes over time; lottery bonds, where the
maturity time depends on a lottery (usually it is the state that offers these bonds) and
the redemption value can be higher than the face value of the bond; zero coupon bonds
that have no intermediate coupons over the maturity of the bond; perpetual bonds that
have no maturity date; and convertible bonds that can either allow for early redemption
by the holder of the bond, or if issued by a company such bonds may include an imbedded
right to convert the bond into equity. These type of bonds are not treated in the text,
only fixed rate bonds are.

(c¢) K. Nyholm, 2007 page 51

SAA in Fixed Income Markets: A Matlab Based User’s Guide

where C, 1) collects the cash flows (i.e. the coupons) and Dy, 1y the discount
factors, i.e. the terms (1 + ;)77 for j = {1,2,...,n}. The present value
of each intermediate coupon payments and the final payment at time-points
{1,2,...,n} is calculated as the product of the payments and the discount
factor. The discount factor is the inverse of one plus the interest rate to the
power of the time-period. To illustrate how the relation in (3.1) can be used
to find the interest rates implied by the bond prices consider the following
example. Let’s assume that five actively traded bonds and one less actively
traded bond form our particular investment universe, and that the following
are observed:

Bond Price Coupon (annual) Maturity (years)

A 100.00 5.0% 1
B 99.50 5.5% 2
C 93.75 4.0% 3
D 89.45 3.5% 4
E 91.00 4.5% 3
F ? 3.0% 3

In the light of (3.1) this information can be collected in the following way:

Py = O(n,n) * Dipy <= Dy = C(;:n) * Py (3.2)

Remembering that D is the vector of discount factors, the interest rates are
defined as:

ry = (Dfl/J) —1Vj={1,2,...n}.

J

In Matlab(R) this can be implemented in the following way:

[1] § = (1:1:5)7;

[2] P = [100.00; 99.50; 93.75; 89.45; 91];
[3] CF = [105.0 0.0 0.0 0.0 0.0;

[4] 5.5 105.5 0.0 0.0 0.0;

[5] 4.0 4.0 104.0 0.0 0.0;

[6] 3.5 3.5 3.5 103.5 0.0;

[7] 4.5 4.5 4.5 4.5 104.5 1;

[8] D = inv (CF) *P;

(c¢) K. Nyholm, 2007 page 52

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Note that line [9] uses element-by-element calculations by ”.”” and ”./”.
Executing this script gives the following result:

R =[0.050000, 0.057933, 0.063888, 0.066228, 0.067242]T.

R is the vector of spot rates and this contains the annual rates for 1,2, 3,4,
and 5 years investments, i.e. the compensation rate that agents require for
investing at these horizons.

It is now possible to find a fair price for bond F' using the information
about F’s cash flows and the spot rates in R. This is done in the following
way:

=
el
th
i
w
w
I
o
W
*
-
i
Bl
=
w
>
1
.
-
w
=

The other yield curve concept mentioned above: ”yield to maturity” is a
complicated average of the spot rates contained in R. The yield to maturity
is the same as the internal rate of return on the stream of cash flows that
define the bonds in the investment universe, and can thus only be calculated
once the bond prices are known.

Yield to maturity is calculated in the following way:

P C n C P C + 100

oyt () (L+y)m

An expression like (3.3) cannot be solved directly because the variable of
interest (y) enters in the expression as a polynomial of order n. Luckily,

Matlab(R) can find a solution using numerical techniques.?

(3.3)

[1] function [out] = price2yield(in)

[2]% Chapter: Risk and Return

4The Financial Toolbox of Matlab(R) contains a built-in function called irr that can
handle these calculations. However, in case the Financial Toolbox is not available the
example in the text demonstrates how the internal rate of return (yield) can be calculated.
The built-in Matlab(tm) function relies on the root-finding function root, whereas the
example in the text draws on fmincon.

(c¢) K. Nyholm, 2007 page 53

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[3]1%

[4]1% Usage:

[5]% [out] = price2yield(in)

[6]1%

[71% in (structure) :

[8]% .P - is the price of the cashflow 1-by-1

[10]1% .CF - cashflow [-price, cpnl, cpn2,...,cpn(r)+principal] r-by-1
[11]1% .t - timing of cashflows in years [0;1;2; ..., r] r-by-1
[12]% e.g. 6 months should be written as 0.5

[13]% out (structure):

[14]1% .Y - vector of yields

[15]%

[16]1% date: October 2006

[17]1% report bugs to: email@kennyholm.com

[18]1%

[19] warning off all; clear y;

[20] P = in.P;

[21] CF = in.CF(:);

[22] t = in.t(:);

[23] nObs = length(CF);

[24]1% --- Defining the function ---
[25] Fx = @(d) (-P+CF’* (d.*ones (nObs, 1)) ." (t)) "2;
[26]% --- Finding the optimum

[27] options_=optimset (’'LevenbergMarquardt’, ‘on’,’'LargeScale’,’'off’, 'Display’,’off’);
[28] [D] = fmincon(Fx, 1, [], (1, (1, (1, 0, 2, [], optioms.);

[29] out.Y = 1/D-1;

This function, called price2yield, calculates the yields for individual bonds
as they are defined by their cash flows. Line [1] defines the function name
and the input and output arguments. It should be noted that structured
variables are used for the inputs and output. For the output this could be
seen as a slight over—kill since only one output is generated, however, it is
sometimes easier to stick with a more general approach than to accommodate
individual function needs. In the end, this is a matter of taste. Lines [2]-
[18] contain user help information on which format should be used when
supplying the function with input variables, as well as information on how to
execute the function. Lines [19]-[23] take care of some general settings and
parameter definitions: warnings are turned off to ensure that the user does

(c¢) K. Nyholm, 2007 page bH4

SAA in Fixed Income Markets: A Matlab Based User’s Guide

not get messages intended for the developer of the function; the variable to
be calculated y is cleared to ensure that old values are not carried over to
the current calculation; the user supplied price of the bond is allocated to
the variable P; the cash flow supplied by the user is allocated to the variable
CF; and the time-steps to the variable ¢; and the number of observations in
stored in the variable nObs. Line [25] contains the function to be minimised:
it is defined as the squared residuals from (3.3), i.e.

min F(D) = [~P,+ C % D'+ C % D> 4 --- 4 (C + 100) D"]*.

Note that a function handle is used to define the objective function in line
[25]. This handle is then ”called” in line [28], which draws on the built-
in optimiser fmincon to conduct the minimisation. D is returned as the
optimal value for the discount factor i.e. D = 1/(1 + r). Consequently, line
[29] calculates the yield y from the discount factor and passes this value to
the function’s output structure.

The following script calculates yields from the example bond-universe
given above.

[1] § = (1:1:5)';

[2] P = [100.00; 99.50; 93.75; 89.45; 91];
[3] CF = [105.0 0.0 0.0 0.0 0.0;

[4] 5.5 105.5 0.0 0.0 0.0;

[5] 4.0 4.0 104.0 0.0 0.0;

[6] 3.5 3.5 3.5 103.5 0.0;

[7] 4.5 4.5 4.5 4.5 104.5 1,

[8] for (j=1:5)

[91 in.P = P(j,1);

[10] in.CF = CF(j,1:9);

[11] in.t = (1:1:9)';

[12] [out] = price2yield(in);
[13] yield(j,1)=out.Y;

[14] end

[15] yield’

Lines [1)-[7] allocate the input to variables. The for loop in line [8]-[14]
performs the calculations for each bond’s cashflow and stores the yield in

(c¢) K. Nyholm, 2007 page 55

SAA in Fixed Income Markets: A Matlab Based User’s Guide

the vector: yield. Line [15] prints the yields for years 1-5, and the output is
shown in line [16].

It is now interesting to compare the one period rates (also called zero
coupon rates or spot rates) calculated following (3.1) to the yields calculated
according to (3.3). Figure 3.3 draws the comparison.

5.8

Zero coupon rate
BB Py s

6.4 -

6.2

gl Yield

Rate (%)

58

iR g

5.4+

atiEld

Figure 3.3: Comparison of a zero curve and a yield curve

It can be seen that the yield curve lies below the zero coupon curve, for
all years but the first. This is not a coincidence. It can be seen from the
definitions of the yield in (3.3) and the zero coupon curve in (3.1) that the
two calculations are identical for the rate applying to the first time-period.
After this the first time-period, the yield can be viewed as a weighted average
of the spot rates, where the coupon payments are the weights. Hence, if the
structure of one-period rates is increasing in maturity so that ro < r; <rs...
the curve of yields will be below the zero coupon curve; conversely, if the
structure of rates is downward sloping, i.e that 7o > r; > r9... the zero
coupon curve will be below the curve of yields. If the structure is flat the
zero coupon curve and the curve of yields will be identical.

(c¢) K. Nyholm, 2007 page 56

SAA in Fixed Income Markets: A Matlab Based User’s Guide

3.3 Forward rates

A concept that is intimately related to spot rates is that of forward rates.
This concept covers the transaction where money is borrowed or lend between
two future dates on terms that are agreed upon today. When assuming that
the actions of financial market participants lead to efficiently determined
bond prices, it is evident that spot rates and forward rates are inseparable so
that forward rates can be uniquely inferred from spot rates and vice versa.
Consider the spot rates determined above for year zero to one and from year
zero to two, i.e. r; and ry, and the forward rate from year 1 to year 2, called
f12. There are two strategies available to the investor who wants to invest
over a two year horizon: (a) invest in a two year bond earning (1 + r3)?, or (b)
investing in the one year bond for one year and in the forward contract from
year one to year two. If financial markets are effective these two strategies
will bring the investor identical monetary compensations because both (a)
and (b) can be traded at time 0. Effectively, the following relationship must
hold between spot and forward rates:

(1+7)* = (147r)*(1+ f12),

which means that the forward rate can be determined by rearranging terms:

(1 +7’2)2
he="r !
+

This formula can be generalised for annual rates as:

1 - m-1/(m—n)
&} -1 for m>n. (3.4)

ho= [0y
Using the spot rates depicted in Figure 3.3 and (3.4) the corresponding one-

period forward rates can be determined. This is done in the example below,
where R contains the spot rates and F' contains the forward rates:

k = (1:1:5)";
P = [100.00; 99.50; 93.75; 89.45; 911];
CF = [105.0 0.0 0.0 0.0 0.0;

5.5 105.5 0.0 0.0 0.0;
4.0 4.0 104.0 0.0 0.0;

3.5 3.5 3.5 103.5 0.0,

(c¢) K. Nyholm, 2007 page 57

SAA in Fixed Income Markets: A Matlab Based User’s Guide

4.5 4.5 4.5 4.5 104.5 1;

%... Calculating spot rates

D = inv (CF) *P;

R =D."(-1./k)-1;

%... Calculating Forwards

F = ((1+R(2:end,1))."k(2:end,1)./(1+R(1:end-1,1))."k(1l:end-1,1))-1;
F = [R(1,1);F];

3.4 Bond pricing functions

Once the yield of a coupon paying bond is known, it is possible to write the
bond pricing function in a short-hand way, rather than using the summing
formula in (3.5):

u C 100
Ptzz(Hy)jJr(Hy)n. (3.5)

To obtain this short-hand pricing function a tool is needed that allows for
re-writing of (3.5). Such a tool is obtained in the following way®: let g =
ZT:,C ¢’ and multiply both sides of this expression by ¢. This gives ¢ x g =
Z;@,;:Ll ¢’. Then calculate g — ¢ * g = Py — Z;”:Erl ¢’, which is the
same as (1 — q) x g = ¢* — ¢, where the LHS follows directly after taking
g outside brackets, and the RHS follows because all terms overlap in the two
sums that are subtracted, apart from the terms involving ¢* and ¢™*'. Now,

dividing both sides by (1 — ¢) which gives:

=1

iqj _ qk o qm—|—1

1—g¢q

Setting ¢ = 1/ (1 + y) , this expression can be used to re-write (3.5) to:

5See also Tuckman (2002, p.42).

(c¢) K. Nyholm, 2007 page 58

SAA in Fixed Income Markets: A Matlab Based User’s Guide

1 100
P = C -
Sy T

=1
_ C*J—l/(l—ky)l/(l—%y)”“} 100
! 1-1/(+y) (1+y)"
- o | BT i
L 1+y 1+y :
- oo [B T
L I+y _
1 1 1 100
- C[&‘&*(Hw"}*(lw)”
_ 2{1_ L 4 100 (3.6)
y (1+y) (1+y)

One advantage of (3.6) over (3.5) and (3.1) for that matter, is that it presents
a closed form expression for the price in the sense that it does not rely on a
sum. When implemented in Matlab(R), or any other programming language,
the calculations of a simple expression will be faster and easier, compared to
the looping structure that is necessary to handle the calculation of a sum.
[TBI: derive an expression similar to the above in continous time... |

3.5 Exercises

Exercise 1 Replicate Figure 4.4 using the bond function as shown in the
text.

(c¢) K. Nyholm, 2007 page 59

Chapter 4

Risk and Return Measures

4.1 Introduction

This chapter presents the principles for calculating risk summary statistics
for fixed income securities. These are essential building blocks that help to
extract information relevant for doing forward looking investment decisions.

Learning objectives

e Understand the basic risk concepts relevant for fixed income instru-
ments

e Be able to calculate returns for fixed income instruments

e Understand which factors that drive yield curve changes

4.2 Risk Measures

A key element in financial management and investment operations is proper
handling of risks. In particular, to facilitate optimal decision making, it is
necessary to estimate the risk of individual assets and portfolios in a compre-
hensive way. Traditional investment analysis, e.g. the Capital Asset Pricing
Model, puts emphasis on variance/standard deviation as a risk measure. The
variance if defined as:

60

SAA in Fixed Income Markets: A Matlab Based User’s Guide

o’ =E|[(y—7)° Z :

where y is the observed quantity, e.g. a time-series of returns, and 7 indicates
the average. The standard deviation is defined as the square root of the
variance, i.e.

o= \E[y-9]

In addition to the variance, the covariance is an important measure, which
is defined as:

J
Ujvk:E[(x_f)(y y Z y):O'j*O'k*ijC

where p is the correlation coefficient. The variance and covariance is col-
lectively called the second moment of a distribution and communicates how
dispersed the series observations are around the average value and how the
data series move together over time. To illustrate this concept assume that
the following information is given about x and y:

MR

which means that x and y are jointly normally distributed with mean pu
and covariance matrix (2. The covariance matrix has the variances on the
diagonal and covariances as the off-diagonal elements. Assume further that

0 1.00 1.2
“:{01’ and Q:{ 1.2 4.001'
This implies that the correlation between x and y is p, , = 04, /0,0, = 0.6.
Graphically this information is represented in Figure 4.1. The upper panel
shows the two marginal distributions; the distribution for y has higher vari-
ance than the distribution for x. The lower panel shows a plot of the pair-
wise observations for = and y. It is clear that there exist a positive correla-

tion/covariance between the variables: the elliptic shape of the plotted area
shows that when x is high then y tends to be high, and when x is low y tends

(c¢) K. Nyholm, 2007 page 61

SAA in Fixed Income Markets: A Matlab Based User’s Guide

03k /Low variance J
o)
2 02F et
8 High variance
otk \ 4
0
-8 B 4 2 0 2 4 53 g
“alue of x and y
10
[
= 0OF
+
B
710 1 1 1 1 1 1 1]
-4 3 2 1 0 1 2 3 4

Figure 4.1: Variance and covariance

to be low. If there was no linear relation between x and y then the plot would
be circular. The variance/standard deviation and covariance are comprehen-
sive risk measures if the underlying variables are normally distributed; and
even when the analysed variables are non-normal, which is the case for most
financial variables, will the covariance often be an informative measure.

4.2.1 Value-at-risk and Expected Shortfall

The risk measures Value-at-Risk (VaR)! and Expected Shortfall (ES) will
often supplement and sometimes substitute the standard deviation as a risk
measure. Considering a return distribution for z, the VaR figure is the largest
possible (often negative) return, at a given confidence level and over a given
period of time, that one will experience; the ES is the expected shortfall
beyond the VaR level. The following definitions apply for the return distri-
bution of x:

!The Value-at-Risk (VaR) should not be confused with VAR, which is an acronym for
the econometric model: Vector Auto Regression.

(c¢) K. Nyholm, 2007 page 62

SAA in Fixed Income Markets: A Matlab Based User’s Guide

VaR, (z) = max{l:Prlz <[<1-a}=F,'(1-a) (4.1)
ES, = FElz|r <VaR,(z)]. (4.2)

« is called the confidence level, so for for example o = 0.99, refers to a
99% confidence level. F~! refers to the inverse of the cumulative return
distribution of xz. The intention of (4.1) is to express VaR as the left tail
in the return distribution (which will most likely be a negative number),
so that there is no more than (1 — a)) probability mass in the tail beyond
[. This is equivalent to the inverse of the cumulative distribution function
of the returns x at the (1 — «) confidence level. Equation (4.2) defines the
expected shortfall as the average return beyond the VaR level. Figure 4.2
illustrates these risk measures on the basis of a probability density function
of returns / portfolio values.

014
0.12 Expected valug————3
o 8] dard deviati
ne standar ewatlon\
0.0ar
0.06 -
0.04r
ES WaR
002t /
0 1 ! .)
20 -15 10 5 o .

Return / “alue

Figure 4.2: Risk measures

Sometimes VaR is defined on the distribution of losses, L . In this case Figure
4.2 is reversed so that the tail of interest is the one to the right in the picture.
In this case VaR can be defined as:

(c¢) K. Nyholm, 2007 page 63

SAA in Fixed Income Markets: A Matlab Based User’s Guide

VaR, (L) =min{l:Pr([L > 1] <1-—a}

In the example below these risk concepts are calculated using the Dow
Jones equity index contained in the Excel file: Data.xls.

[1]1%

--- load and sort data ---

[2] Dat = xlsread(’ C:\A_proj ects\A_book\Data\Data’ , "Equity’);

[3]
[4]

stepp = 0.5;

[nObs junk] = size(Dat);

[5]% --- calc summary stats ---

[6] Ret.s = sort(Dat(:,4));

[7]

avg = mean (Ret_.s); sig = std(Ret.s);

[8] nObs_99 = floor(.01*nObs); nObs.95 = floor(.05*n0Obs);

[9] VaR-99 = Ret-s(nObs-99,1); ES_-99 = mean(Ret-s(1:n0bs-99-1,1));

[10] VaR-95 = Ret_s(nObs_95,1); ES_95 = mean(Ret_s(1l:n0bs_95-1,1));

[11] VaR_-95.N = avg-norminv(0.95,0,1) *sig;

[12] VaR_-99.N = avg-norminv(0.99,0,1)*sig;

[13]1% --- generate normal pdf ---

[14] x = (VaR-99:stepp:max (Ret-s))’;

[15] retnorm = pdf (‘norm’,x,avg,sig);

[16]1% --- generate bar plot of observed returns ---

[17] [barl bin] = hist (Ret.s,25);

[18] barl.adj = barl’./nObs./(bin(1,2)-bin(1,1));

[19] figure

[20] bar(bin’, barl-adj,'w’)

[21] hold on

[22] plot (x,ret_-norm,’'k-',’linewidth’,2)

[23]1% --- generate output table ---

[24] disp(’...Results...’)

[25] disp(sprintf (’VaR(99)= %6.2f Based on Normal Dist: %6.2f ’, [VaR-99 VaR_-99.N]))
[26] disp(sprintf (’VaR(95)= %6.2f Based on Normal Dist: %6.2f ’, [VaR.95 VaR_95.N]))
[27] disp(sprintf ('ES(99) = %6.2f ES(95) = %6.2f ', [ES_.99 ES_95]))

This script generates the following output on VaR and ES as well as Figure
4.3. The Figure shows the empirical return distribution overlaid with a fitted
normal distribution.

(c¢) K. Nyholm, 2007 page 64

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[1]...Results...
[2]VaR(99)= -11.00 Based on Normal Dist: -9.25
[3]VaR(95)= -6.44 Based on Normal Dist: -6.37
[4]ES(99) = -16.58 ES(95) = -9.47

012

01 r q

—i 1 — —

Figure 4.3: Empirical and normal distribution

In the above script, lines [1]-[4] load the data, define a step-length parameter
and find the number of observations of the loaded data. Lines [5]-[12] perform
the central calculations of the script file. Line [6] sorts the return series
from smallest value to largest value; line [7] calculates the mean and the
standard deviation of the returns; line [8] finds the observation number that
corresponds to the 1% and 5% tail-point of the return distribution. The
actual return observation at these observation numbers are the empirical
VaRs at the 95% and 99% confidence levels. The floor function is used
to round the observation number to an integer value, since the observation
number has to be an integer. Using floor rather than ceil produces a more
conservative estimate of the VaR number. For the case at hand: there are
624 return observations, which implies that the 99% VaR corresponds to

(c¢) K. Nyholm, 2007 page 65

SAA in Fixed Income Markets: A Matlab Based User’s Guide

observation numbers floor(0.01 x 624) = 6 or ceil(0.01 x 624) = 7. Similar
calculations can be performed for the 95% VaR giving observation numbers
31 and 32, respectively. Line [9] is a "lookup” in the sorted vector of returns
called Ret_s for the 99% VaR. The second part of Line [9] calculates the
Expected Shortfall i.e. the average of the observations that are above the
VaR level. Line [10] performs similar operations for the 95% level. Lines [11]
and [12] calculate the VaR based on a normal distribution using the following
formula:

VaR, = E[r] + @71 (1 —a)* o * V1, (4.3)
where ® ! is the inverse normal distribution. The o/t in (4.3) accounts for
the standard deviation of the return series over the period of time that the
VaR number is calculated for. In the normal distribution the variance scales
with time, so the standard deviation scales by the square root of time. For
example, if the standard deviation is calculated as the per annum value and
a one month VaR is required, then ¢ = 1/12. In the calculation performed
in the script file above, the VaR is calculated for the observation frequency
of the return observations, hence no time-adjustment is necessary.

Expected shortfall in closed form

A closed form expression for the expected shortfall can be derived when
assuming that the returns are normally distributed. Starting from the defi-
nition of the expected shortfall?

ES, (z) = 1#_0 /0 Q. () ds = 1#_6 /O CFl(s) ds, (4.4)

where Q is the quantile and F is the cumulative distribution function. The
variable ¢ is the confidence interval e.g. ¢=99% implies that the expected
shortfall is calculated for the 1% worst outcomes of the variable under in-
vestigation. Naturally, the definition in (4.4) is identical to (4.2). Assuming
that 27N (0, 1), the closed from expression for the expected shortfall is given

by:
-1 VaR (1 —¢)?
a-al) s

ESC (I) = m exp {_

2See, e.g. ?

(c¢) K. Nyholm, 2007 page 66

SAA in Fixed Income Markets: A Matlab Based User’s Guide
To derive (4.5) the following building blocks are needed:?

F7l(s) = V2erf ' (2%s—1) (4.6)
1

/Ow erf ! (s) ds = N exp {— [erf ™ (s)]2} : (4.7)

Substituting (4.6) into (4.4) gives:

—/2 1—c
ES. = V2 erf 1 (2% 5 —1) ds
1—c /s

= = 03;/25* ﬁexp {— [erf ™' (1 — 2% c)f}
1

= mexp{— [exf ™ (1—2*6)}2}, (4.8)

where the second line follows from the integration rule: [f(as+b)ds =
1F (as+b) in combination with (4.7).* Line 3 simplifies the expression.
Because of symmetry of F'(s) and erf™' (s), s € {0,...,1}, and using (4.6)
we can write:

Vaaf (1 -2+ c)r — [P (-]
(3

[erf ™" (1 — 2% c)}2 =

which equates (4.8) and (4.5).

To validate the derived expression, the below Matlab(R) script compares
the application of (4.5) to expected shortfall values calculated on the basis
of simulations.

[1] €I = [0.90; 0.95; 0.975; 0.99; 0.999; 0.9999 I;

3See the appendix for a description of the error function (er f).

4The character F' denotes the primitive function of f such that F'(z) = f(z). It is
important to distiguish between F' and F, where the latter is the cumulative distribution
function.

(c¢) K. Nyholm, 2007 page 67

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[2] x = randn(le6,1);
[3] nCI = length(CI);
[4] ES.sim = zeros(nCI,1l);
[5] ES.calc = zeros(nCI,1);

[6] for (j=1:nCI)

[7] c = CI(3,1);

[8] ES.sim(j,1) = sum((x<=norminv(l-c)).*x)/sum(X<=norminv(l-c));
[9] ES_.calc(j,1) = -1/((l-c)*(2*pi)"0.5)*exp (- (norminv (c)"2)/2);
[10] end

[11] disp(’Simulated and calculated numbers’)
[12] disp(’ CI ES_sim ES_calc ')
[13] disp([CI ES_sim ES_calcl])

Line [1] defines the confidence levels at which the calculations are to be
performed. In line [2] return realisations are generated, as one million draws
from the standard normal distribution. These draws are stored in a variable
called x, which forms the basis for the calculation of the simulation-estimate
of the expected shortfall. Line [3] finds the number of confidence levels for
which calculations are performed. This line is not strictly needed since we
should be able to remember how many confidence levels we entered in line [1].
However, requesting the length (i.e. the number of entries) of the variable
CT makes the script more flexible and easier to adapt if we want to run the
experiment for a higher or lower number of confidence levels. In this case it is
necessary only to make changes to the script in line [1]. Otherwise, we would
need to change lines [1],[3]-[6]. Lines [4]-[5] clear the vectors that store the
estimated numbers that are generated by the loop in lines [6]-[10]. Linel[7]
allocated a given confidence level to the scalar ¢ taken from the vector of all
relevant confidence levels, C'I, on the basis of the looping variable j. j spans
the integers from 1 to nC1, as seen in line [6]. In the example above nC'I = 6
. Line [8] generates the simulation based estimate of the expected shortfall.
This is done by first finding the realisations of x that are below the threshold
as specified by the VaR of the respective confidence interval. In Matlab(R)
the relation operators can be used on vectors to generate indicator variables,
in effect the expression (z <= Z), generates a vector of 0s and 1s, of the same
length as z and Z, where a value of 1 represents when the "test”, in our case
"less then or equal to”, is true and a value of 0 represents that the test is
false. It can then be seen that line [8] calculated an indicator variable for
all outcomes of = that fall in the left tail of the distribution, where the left

(c¢) K. Nyholm, 2007 page 68

SAA in Fixed Income Markets: A Matlab Based User’s Guide

tail is defined by VaR(1 — ¢). The product of the indicator variable and z,
i.e. (x<snorminv(i-c)).*x), is a vector of 0 and z;s, where x; represent a given
ith element of x falling in the left tail. The sum of this vector approximates
the integral of the tail and the denominator of line [8] contains the number
of observations in the tail. In this way line [8] calculates the average of
the occurances of x that fall in the left tail i.e. it calculates the simulation
based expected shortfall. Line [9] implements (4.5). Lines [11]-[13] prints the
results. Running the script generated the following output:

Simulated and calculated numbers

CI ES_sim ES_calc
0.9000 -1.755 -1.755
0.9500 -2.065 -2.065
0.9750 -2.340 -2.339
0.9900 -2.669 -2.665
0.9990 -3.366 -3.367
0.9999 -3.947 -3.959

Evidently, the simulated and calculated numbers are close to each other.
Any discrepancy between the numbers arise from approximation errors in the
estimate derived from the simulation based expected shortfall calculation.

4.2.2 Duration and modified duration

One of the key risk measures in the fixed income investment universe is the
modified duration. This measure has at least two interpretations, as:

a) a present value weighted average of future payments/cashflows®

b) the bond price sensitivity to a change in the underlying interest rates
curve

It is the second of these interpretations that is most frequently applied in
fixed income analysis and the one that we will focus on in this section. To
illustrate the concept of modified duration it is instructive to examine the
relationship between the price of a bond and its yield. For this purpose we

5This is actually the interpretation of ”duration”; modified duration is the duration
divided by one plus the yield.

(c¢) K. Nyholm, 2007 page 69

SAA in Fixed Income Markets: A Matlab Based User’s Guide

run the script below that calculates the price of four bonds for varying levels
of yields. The results are plotted in Figure 4.4.

[1] Bondl = [3 3 3 3 103 1;

[2] Bond2 = [333333333 103 I;

[3] Bond3 = [15 15 15 15 115];

[4] Bond4 = [15 15 15 15 15 15 15 15 15 115];
[5] ptl = [1:5]7;

[6] pt2 = [1:10]’;

[7] P1 = 0; P2 = 0; P3 = 0; P4 = 0;

[8] for (j=1:300)

[9] y = j/1000;

[10] D1 = (1./(1+y)."ptl).*ones(5,1);
[11] D2 = (1./(1+y)."pt2).*ones(10,1);
[12] P1(j,1) = Bondl*D1,

[13] P2(j,1) = Bond2*D2;

[14] P3(j,1) = Bond3*D1,

[15] P4(j,1) = Bond4*D2;

[16] end

[17] xx = [0.1:0.1:30]";

[18] figure

[19] plot(xx,P1l,'k’)

[20] hold on; plot(xx,P2,’k:’")

[21] hold on; plot(xx,P3,’k’)

[22] hold on; plot(xx,P4,’'k:’), xlabel(’Rate %’), ylabel(’Price’)

In the script, lines [1]-[7] provide various definitions. First, lines [1]-[4]
establish the cashflows of four bonds: Bondl, Bond2, Bond3, and Bond4.
Bondl and 2 have coupons of 3% and Bonds 3 and 4 have coupons of 15%.
All four bonds pay annual coupons. Second, Bondl and 3 are five year bonds
while bonds 2 and 4 are ten year bonds. Lines[8]-[16] contain the loop that
derives bond prices for varying levels of the yield. The counter-variable j
runs from 1 to 300 in steps of 1. When the yield y is calculated in line[9)
it is set equal to j divided by 1000. This means that prices are calculated
for yields between 0.1% to 30%. Lines[10]-[11] calculate the annual discount
factors using the auxiliary variables from lines[5]-[6]. The prices for the four

(c¢) K. Nyholm, 2007 page 70

SAA in Fixed Income Markets: A Matlab Based User’s Guide

250 -

1] S j

Price

1
0] 10 15 20 25 30
Rate %

Figure 4.4: Bond price sensitivity to yield levels

different bonds are calculated in lines[12]-[15] following (3.1). The remainder
of the script plots the results as shown in Figure 4.4.

Each line in Figure 4.4 shows the bond price as a function of the yield.
The dotted lines in the figure correspond to the long bonds (i.e. the ten year
bonds) while the full lines correspond to the short bonds i.e. the five year
bonds. It is noted that the 3% coupon bonds attain a value of 100 when the
yield is 3%, and the 15% coupon attain similarly the value of 100 when the
yield is 15%. This is according to theory. It is further noted that the slope
of the price-yield relationship is steeper for the longer (i.e. ten year bonds)
than it is for the shorter five year bonds; although it can be seen that the
difference in slope wears-off as the yield level increases. In addition, it can
be seen that the price-yield relationship is inverse so that the price increases
when the yield decreases and vise-versa. Hence, the price-yield relationship
has a negative slope. Finally it is noted that this relationship is convex and
the convexity is higher for the longer bonds than for the shorter bonds.

Based on the inspection of Figure 4.4 as iterated above, it seems reason-
able to rely on a linear and a quadratic term to approximate the price change

(c¢) K. Nyholm, 2007 page 71

SAA in Fixed Income Markets: A Matlab Based User’s Guide

that follows from a small change in the yield.® Such an approximation can
be achieved via a Taylor series expansion of order 2 around the bond price
P at the interest rate r:

dpP 1d*P 9
P(r+Ar) = P(r)+E*AT+§W*AT +0
AP 1dP 11d*P 2
TN e A g AT 49

where the second line follows after subtracting P(r) on both sides of the
equation, dividing through by P(r) to attain an expression for relative price
changes, and assuming that the remainder O is small. We can now define
duration as:

1dP

D=——— 4.10
P dr’ (4.10)
and convexity as:
1 d*P

On the basis of (4.9) an approximation for the relative bond price change
can then be written as:

AP
P

Modified duration is defined as the price sensitivity measure based on the
changes in the yield, hence deriving dP/dy instead of dP/dr on the basis of
(3.5) or (3.6) gives accordingly:”

1
:—D*Ar+§*ConU*Ar2.

6Strictly speaking, the causality is reversed here. Previously in the text it was men-
tioned that the yield can be calculated only when the bond price is known. What we do
now is to approximate price changes that follow from yield changes. This is legitimate
if we treat the yield curve as a general market measure and then derive prices for bonds
other than those that were used to derive the yield curve. In practise, we will often reason
on the basis of yields and use yield curve movements to find the bond prices that interest
us.

"Differentiate expression (3.5) with respect to y gives (4.12), and differentiating (3.6)
with respect to y gives (4.13).

(c¢) K. Nyholm, 2007 page 72

SAA in Fixed Income Markets: A Matlab Based User’s Guide

MD =

(4.12)

ii* C o 100
(1+y) (1+y)"

J=1

\ {y—(’; i {1-@} - {100—%} *(H—Z)nﬂ}(ll-li%)

where the first expression follows from (3.5) and the second from (3.6). An
approximation formula to the modified duration of a bond can be derived
from (4.13) when assuming that the bond under investigation is a par bond®,
i.e. assuming that C' = 100 % y and that P = 100.°

1 (1 1 1
MD =~ —{ 002*%[1——4—{100— Oo*y]* ”nH}
100 y (1+y) (1 (1+y)
1 1
- -, 4.14
y[(1+y)] (4.14)

Similarly to the above derivation of the modified duration for a bond
by the first derivative of the pricing expression with respect to the yield, the
expression for (modified) convexity (M Conv) can be found by differentiating
the expression for dD/dy with respect to y:

1—(1+4y)™ " —1 1—(1+y)™ " —1
= oy (19 = T 1+ y)

-4y~
0
This expression has the form sometimes encountered in text books. For example,

Campbell, Lo, and MacKinlay (1997, p408) presents an approximation to the bond
duration, where duration is expressed as the Macaulay’s duration. Remembering that
Ditacautay = (1 +y) * M D, makes it clear that dividing the expression derived by Camp-
bell, Lo and MacKinley with (1 + y), constitutes a transformation from Macaulay duration
to modified duration and is thus identical to (4.14).

9Note that (4.14) does not constitute an approximation for par bonds. In the case of
par bonds (4.14) holds exactly.

(c¢) K. Nyholm, 2007 page 73

SAA in Fixed Income Markets: A Matlab Based User’s Guide

1 1 ~ .
MConv = ?*(1+y)2[;j*(j+1)*(1+y)j (4.15)
+n*(n+1)*%]

1 1 (n+1)*xn C
al R vl e (100‘5)

2% (C 1 n 2% C
C(1+y)"? (E+(1+y)*y2) }+ % } (4.16)

A par-bond approximation to the convexity expression is obtained by as-
suming that C' = 100 * y and that P = 100, similar to the derivation of
(4.14) above. When inserted in (4.16) these assumptions give the following
approximative formula:

2 1
MConv~ — x |1 — -y . (4.17)

y? I+y)" Q+y"
The above derived expressions for the modified duration and convexity of
a bond leads to the following approximation for bond price changes on the
basis of changes in the yield:

AP 1
- :—MD*Ay+§*Conv*Ay2. (4.18)

The formulas presented above for calculating the bond price (3.6), the mod-
ified duration (4.13) and the convexity (4.16) are implemented in the Mat-
lab(R) function shown below:

[1] function [out] = bond(in)

[2]%

[3]1% Chapter: Risk and Return

[4]%

[5]% This function calculates the price, modified duration

[6]1% and convexity of a coupon bond having annual payments

[71%

[8]% Usage:

(c¢) K. Nyholm, 2007 page T4

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[9]1% [out] = bond(in)

[10]%

[11]1% in (structure):

[12]% .Y - yield of the bond 1-by-1 e.g. 0.053 = 5.3%
[13]1% .C - coupon of the bond 1-by-1 e.g. 5 (=5% bond)
[14]1% .N - years to maturity 1-by-1 e.g. 2.5 (=2 years and 6 months)
[15]1% out (structure):

[16]% .P - Price of the bond

[17]1% .MD - Modified duration of the bond

[18]% .Conv - Convexity of the bond

[19]%

[20]% date: November 2006

[21]1% report bugs to: email@ekennyholm.com

[22]1%

[23] y = in.¥; ¢ = in.C; n = in.N;

[24] p = ¢/y*(1-1/(1+y)"n) + 100/(1+y) n

[25] md = 1/p*(c/y"2*(1-1/(1+y) " n) - n/(1+y) " (n+1)*(100-c/y));

[26] conv = (1/p)*(1/(1+y)"2*((n+1)*n/(1+y) n*(100-c/y)

[27] - 2*%¢/(1+y) " (n-2) *(1/y"3 + n/ ((1+y)*y"2))) + 2*c/y"3);

[28] out.P=p; out.MD=md; out.Conv=conv

The help text in the preamble of the function (lines[2]-[22]) outlines the input
data required to run the function and specifies the outputs that the function
produces. Line [1] contains the function name ”bond” together with the input
structure called in and the output structure called out. In line [23] the input
values are redirected to local variables. This is done for convenience only.
Line [24] implements equation (3.6), line [25] implements equation (4.13),
and finally, lines [26]-[27] implement equation (4.16). Line [28] concludes the
function by assigning the results to the output structure.

Using the above bond function it is possible to analyse how well the per-
formance is of the approximative formulas for the modified duration and
convexity (4.14) and (4.17) respectively. Such an analysis is generated in the
below Matlab(R) script file.

[1] max- = 100; % the maximum number of time periods to investigate
[2]% ... assigning the input parameters to IN structure

[3] X.Y = 0.06; % yield

[4] X.C = 5.5; % coupon

(c¢) K. Nyholm, 2007 page 75

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[5] X.N = 0; % initial number of years
[6]% ... generating containers for the results
[7] md = zeros (max-,1);

[8] md-approx = zeros(max-,1);

[9] conv = zeros (max-,1);

[10] conv_approx = zeros (max_,1);

[11] conv._approx-1 = zeros (max-,1);

[12] p = zeros(max-,1);
[13] v = X.Y;
[14] ¢ = X.C;

[15] for (j=l:max-)

[16] X.N=7;

[17] [out] = bond (X); % calling the bond function

[18] p(j,1) = out.p; % assign outputs

[19] md(j,1) = out.MD; % assign outputs

[20] conv(j,1l) = out.Conv;, % assign outputs

[21] md-approx (j,1) = 1/y*(1-1/(1+y)"3);

[22] conv_approx (j,1) = 2*y/y"3*(1-1/(1+y) "J-y*3/ (1+y) " (3+1));
[23] end

[24]1% ... plotting results

[25] figure

[26] subplot(2,1,1), plot(md, 'k-'), xlabel ('Bond maturity’), ylabel(’'Modified duration’)

[27] hold on

[28] plot (md-approx, 'k--")

[29] subplot(2,1,2), plot(conv,’'k-’), xlabel ('Bond maturity’), ylabel (’Convexity’)
[30] hold on

[31] plot (conv_approx,'k--"')

The code above is well annotated so there is no need to go through it here in
detail. The results generated by the script are shown in Figure 4.5. The solid
lines in the figure show the exact formulas and the dotted lines the approx-
imative formulas. It can be seen that he approximative formulas perform
relatively well for the chosen parameters.

(c¢) K. Nyholm, 2007 page 76

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Maodified duration
=

1 1 1 1 1 1
0 10 20 30 40 a0 60 70 80 a0 100
Bond maturity

600

400} = .

Convexity

200 - A

D 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 B0 70 80 90 100

Bond raturity

Figure 4.5: Approximations to the modified duration and convexity

4.3 Fixed Income Returns

Financial asset prices fluctuate over time, however, on average they tend to
increase in nominal as well as real terms. There are two main reasons for
this. Firstly, most humans prefer to consume today rather than tomorrow, or
at any other future point in time. Hence, a compensation must be obtained
by investors for postponing their consumption to a future date.!® Secondly,
for almost all assets the future pay-off is unknown; this is for example the
case for equities and for bonds sold before maturity. Consequently, as the
prices of these assets fluctuate as times goes by, as an unknown function
of underlying market factors, the future pay-off to investors is uncertain /
risky. Most investors (and humans) have aversion against uncertainty and
thus require a positive compensation for assuming such uncertainty / risk.
For these reasons, in financial theory and investment management, the return
and risk on an asset is synonymous with the erpected return on the asset.

10This compensation is paid by the counterparty in the financial market. If for example
a firm needs capital to fund its investments in machinery, it can raise money by issueing
bonds in the capital markets. These bonds offer an interest rate which is paid by the firm
to make it worthwhile for investors to postpone their comsumption.

(c¢) K. Nyholm, 2007 page 77

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Likewise, since the risk of an asset is unobservable and we need to estimate
it, we also talk about the expected risk.

Let t denote time and F the expectation operator, then the total or gross
return on an asset can be defined by:

B (rior) = future amount received E (F;)

= 4.19
amount paid P4 ()

and the relative return can be defined as:

future amount received - amount paid
E(r) = AS P (4.20)
amount paid

E(P)— P, E(AP)

P, P,
It is clear that:
E (Pt) Pt—l tot
E(r) ==Y _—tl _ p(pot) _1
(Tt) -Pt -Pt—l (Tt)

and that:

E(P) =1+ E ()]« Py,

A continuos compounding version of the above return calculation also exists.
According to this the return is calculated by:

E(r)) = log (gT) |

To ease notation, in the following the expectation operator E is suppressed.
It is thus assumed, unless otherwise stated, that the future pay-off, risk and
return are unknown and only expectations to these entities can be formed.
Actually, much of the ”art” of investment management originates from devis-
ing models and techniques to efficiently and as precisely as possible estimate
the future unknown returns for the eligible investment universe that one deals
within.

The return from holding an equity can be broken down into the following
components:

re4%ty — change in price + dividends
p)

(c¢) K. Nyholm, 2007 page 78

SAA in Fixed Income Markets: A Matlab Based User’s Guide

where both parts are difficult to estimate. The first term typically depends
on the general evolution of the equities markets, the state of the economy;,
the state of the industry sector to which the firm belongs, as well as market
specific factors prevailing at the time of the sale. The second term is also
difficult to proxy: even though companies in general publicise their intended
dividend policy, it is far from certain that they also stick to it. Hence, both
terms in the equity return calculation are stochastic and fairly difficult to
approximate.
The holding period return of a bond comprises the following elements:

rbnd — change in price + coupons + passage of time. (4.21)

The first element of the bond return in (4.21) can be proxied by (4.18), hence:

1
change in price = —MD x Ay + 5 * Conv * Ay?. (4.22)

Coupons, relative to the price, received over a given interval of time is defined
by:

coupons = % * At, (4.23)

where the time interval At matches the time interval over which the yield
change is calculated in (4.22) and is given as a fraction of the coupon pe-
riod.!! The last part of (4.21) concerns the passage of time. To gauge this
components consider a bond at time ¢ having maturity n. At time ¢ + 1
this bond will have a maturity equal to n — 1. Hence, all else equal, the
approximation to the passage of time can be done by calculating the price
difference between the same bond at time ¢ + 1 and ¢ using e.g. (3.6). It is

the intention of this calculation to derive an expression akin to %—1::

" Calculation of bond prices that ignore this accrued coupon payment are referred to as
”clean prices”, whereas when the accrued coupon part is included in the prices, they are
referred to as ”dirty prices”.

(c¢) K. Nyholm, 2007 page 79

SAA in Fixed Income Markets: A Matlab Based User’s Guide

P —P 1 <O [1] 100
— = — % (—* |1 +
B, Boo\y Q+y)"] @+y"t
R)
y I+y)"] Q4"
1 < C B C . 100 100 >
P \yx(1+y)" yx1+yp)"" A+t (14"
1 < C Cx(1+y) 100x(1+y) 100 >
= % n n n - n
P \y(l+y) y(1+y) (1+y) (1+y)
100xy — C
- 7 = 4.24
P+ (1+y)" (4.24)

Combining (4.22), (4.23) and (4.24) gives an approximation to the bond
return'?:

C 100y — C

1
bond 2
= —MD=xA —xC x A — x At+ ———— xA.25
r . y+2 onv y/ P +P*(1+y)")
~ N——
change in price coupon, passage of time

As seen above, the underlying factor that determines bond prices, and
hence bond returns, is the yield curve’s shape and location, see e.g. equation
(3.1) or (3.6). For bonds where the issuer is assumed to be default free,
i.e. always capable of paying coupons, the coupon part above is known with
certainty. It is often assumed that government bonds are default free. For
corporate bonds, i.e. bonds issued by firms rather than governments, it can
be reasonable to assume that the coupon and terminal payment are uncertain.
However, typically these payments will be significantly more certain than the
dividend payments of the equity return. Firstly, the coupon payments are
promised payments, unlike dividends. Dividends are paid if there are funds
available; coupons have to be paid in the same way as interest payments on a
loan from the bank; if bond holders do not get their coupons on time they can
declare the firm in bankruptcy. Secondly, in the event of a bankruptcy, bond

12The yield is denomibated as a fraction, e.g. y = 0.05 if the yield is 5%, whereas the
coupon is denomined in a monetary unit, e.g. C =5, if the coupon rate is 5%. In effect,
the 100 in the numerator of the expression for the passage of time (4.24) serves to make
the yield and the coupon comparable in sizes.

(c¢) K. Nyholm, 2007 page 80

SAA in Fixed Income Markets: A Matlab Based User’s Guide

holders will typically receive part of their money back: the sale of the firm’s
assets will be used to pay a fraction of the bond holders claims, while equity
holders get nothing (the bankruptcy would be unjustified if equity holders
were to get anything). The third term in the bond return decomposition
is passage of time. This term refers to the property that the bond price
converges to its terminal value (pull-to-par effect) when the time to maturity
shortens. This term is non-stochastic.

Equation (4.25) constitutes an approximation to the return on a default
free coupon paying bond. The exact calculation expression taking into ac-
count the factors mentioned by (4.21) can be written as:

Tbond _ Tttg
tit) — n
B

PY —Pr 4 Cxj
t /. (4.26)

Here n refers to the number of remaining periods until the bond matures. The
non-stochastic pull-to-par effect is accounted for by the maturity shortening
of the bond at time ¢+ 1: the bond is acquired at time ¢ when it has maturity
n, as signified by P;*. After j periods the holding period return is calculated
from ¢ to t + j, the bond has come closer to maturing due to the passage
of j periods, hence, the price at ¢ + j refers to a bond that has a remaining

maturity of n — j periods, as signified by P/}

(c¢) K. Nyholm, 2007 page 81

Chapter 5

Term Structure Models

5.1 Introduction

This chapter presents different ways to model yield curves in the maturity as
well as in the time-series dimensions. It presents factor models and distin-
guishes between arbitrage free and not-necessarily arbitrage free models. We
will see how the fundamental partial differential equation (PDE) is going to
help us in constructing arbirage free yield curve models and how multivariate
time-series models help to construct dynamic versions of the not-necessarily
arbitrage-free parametric yield curve models.

Learning objectives

Understand the difference between arbitrage free models and other
types of yield curve models

Know the difference between affine and quadratic models

Be able to use yield curve models in practise

Learn how to interpret yield curve factors

82

SAA in Fixed Income Markets: A Matlab Based User’s Guide

5.2 Not-Necessarily Arbitrage Free Models

This section presents a yield curve modelling strategy that is based on econo-
metrics and empirical observations. It basically takes yield curve observations
and /or bondprices as given and sets out to model these quantities as well as
possible, without forming an opinion on whether observations result from an
equilibrium economic model or what the underlying fundamental mechanism
are that generate yields and prices. Such a modelling approach is in contrast
to the so-called "no-arbitrage models”, that in general assume a dynamic
evolution for yield curve factors under a risk-neutral measure and explicitly
writes down the functional form for the market price of risk, and as such im-
poses a certain structural form on the economic agents that trade and thus
generate price and yield observations. The no-arbitrage modelling framework
is presented in Section 5.3. In the sections below we present two models that
are not necessarily arbitrage free. These are the Nelson-Siegel and Svenson-
Soderlind models. A dynamic represenation of the Nelson-Siegel model is
presented by Diebold and Li (2006). It is this dynamic framework that we
use below, while we also explain more ”traditional” estimation procedures.

5.2.1 Nelson and Siegel

A parametric three-factor specification for the yield curve at a given point
in time is suggested by Nelson and Siegel (1987). The three factors they put
forth represent the yield level at infinite maturity, the slope (the difference
between the yield observed at the long and the short end of the yield curve;
and curvature of yield curves, i.e. how much the curve ”"bends” in the medium
maturity spectrum. By using three factors and one time-decay parameter
the model proves to explain well the yield curve location and shape as a
function of maturity. Another way to put this is to say that the model
can capture the major part of the variability of yield changes over time,
and is as such akin to a regular factor decomposition of the yield curve
(see, e.g. Litterman and Scheinkman (1991))!. The difference to a factor
analysis is that Nelson and Siegel (1987) prespecifies the factors and a priori
assigns a given interpretation to each of the three factors (these being: level,

LA factor model (which is similar to a principle component analysis) finds underlying
factors in a data set (covariance matrix) in such a way that the factors are uncorrelated and
maximise the explanatory power of the extracted factors. For information see, Johnson
and Wichern (1992)[ch. 8 and 9].

(c¢) K. Nyholm, 2007 page 83

SAA in Fixed Income Markets: A Matlab Based User’s Guide

slope and curvature)?. Figure 5.1 offers a visual interpretation of these yield
curve factors and Figure 5.2 gives the interpretation of the yield curve factor
sensitivities: these two elements correspond to the (3, and H, respectively,
in equation (5.1). The sensitivity matrix is to a large extent defining the
Nelson-Siegel model, and this is further elaborated in equation (5.2)

Following the intuitive parametrisation suggested by Diebold and Li (2006)
the functional form for the Nelson-Siegel model is:

Yi(r)=H - B, + e, (5.1)

where Y; (7) is the vector of yields observed at time ¢ for the 7" maturities 7,
and e ~ N (0, R). The matrix of factor sensitivities is explicitly given by:

1 1—6X§\)7(—:)\7'1) 1—€X§7(—:)\71) — exp (_)\7—1)
1 1—exp(—A72) l—exp(=AT2) exD (=71

H— ‘ /T'rg AT2 ‘ p (2) . (52)
1 1—eX§7(—;)\TT) 1—eX§£;)‘TT) — exp (—)\TT)

The yield curve factors are collected in 3, = {level,, slope,, curvature,}” .
The variable, A\, determines the speed of time-decay for the slope and cur-
vature sensitivities, i.e. the particular patterns followed by the sensitivities
as depicted in Figure 5.2. In theory, there should be a time subscript on A
so that it would become); and thus be allowed to vary over time; however,
in practise it only marginally improves the fit of the Nelson-Siegel curve to
include such time-dependancy on the account of A when fitting the Nelson-
Siegel curve to yield curves observed at different time-points. The marginally
improved fit weighted against the significant increase in the number of esti-
mated parameters it would entail (the number of estimated parameters would
increase by n — 1, where n is the number dates in the sample) makes it in
general not worthwhile to add a time-subscript to .

As an initial step to get familiar with the Nelson-Siegel model we can
consider A to be a constant, rather than a parameter to estimate. Then (5.1)
reduces to a linear regression that can then be solved for different values of A
on the basis of which the optimal A can be chosen as the one that minimises

ZNote that Nelson and Siegel (1987) originally formulated the model in terms of forard
rates. By integrating the forward rate expressions the yield form of the Nelson-Siegel
model appears, as presented in this chapter. The reader is invited to perform the relevant
calculations in 77 exercise at the end of this chapter.

(c¢) K. Nyholm, 2007 page 84

SAA in Fixed Income Markets: A Matlab Based User’s Guide

the squared errors. The following Matlab code implements such a solution
strategy.

[1] Y = [2.17 2.47 2.85 3.39 4.01 4.31 ...

[2] 4.48 4.58 4.65 4.70 4.74 4.77 4.79]1";

[3] tau = [1 3 6 12 24 36 48 60 72 84 96 108 120]’;

[4] nTau = length(tau);

[5] for (k=1:50

[6] L = k/200+0.01;

(71 H = [ones(nTau,1)

[8] (1-exp (-L.*tau)) ./ (L.*tau)

[9] (1-exp (-L.*tau)) ./ (L.*tau) -exp(-L.*tau)];

[10] Beta = H\Y;

[11] u = Y-H*Beta;

[12] stderr = sqrt(diag ((u’*u)/(length(Y)-4)*pinv (H'*H)));
[13] Sumu2 = sum(u.”2);

[14] Res(k,:) = [Sumu2 Beta’ L];

[15] end

[16] optim = find(Res(:,1)==min(Res(:,1)));

[17] disp(’'The optimal Nelson-Siegel parameters’)

[18] disp(’ Level Slope Curvature Lambda’)

[19] disp(Res (optim,2:end))

[20] disp(stderr’)

The following results are produced when the above Matlab(R) code is exe-
cuted:

Level Slope Curvature Lambda
4.9988 -2.9969 0.49941 0.1

0.023184 0.065405 0.20141

A short description of the code is warranted. Lines [1]-[3] define the yield
curve under investigation and at which maturities the yields are observed.
Line [4] calculates the number of yield observations in Y: this is needed
to construct the H matrix i.e. to get its row-dimension right. The main
calculations are performed in the loop covered by lines [5]-[15]. k represents

(c¢) K. Nyholm, 2007 page 85

SAA in Fixed Income Markets: A Matlab Based User’s Guide

the counter variables that in line [6] is translated into the value for A so
that A\ € {0.015,0.02,...,0.26}. Naturally some form of prior knowledge is
necessary in order to determine the appropriate range for A or the range can
be determined by trial-and-error. In lines [7]-[9] the H matrix is defined. In
terms of a linear regression H represents the "x variables”, i.e. the variables
on the right hand side of the regression equation. The LHS of the regression
equation is the vector of yields Y and the parameters to be estimated are
collected in f. Line [10] conducts the regression, line [11] calculates the
residuals, and line [12] calculates the standard errors of f.

As hinted at above, the parameter)\ is estimated in a two step proce-
dure, where the first step calculates the regression equation for a series of
potential values of A\, then in a second step the A\ that provides the best fit
is chosen. As a proxy to determine the best fit this example uses the sum of
squared residuals (similar to the OLS criterion): line [13] calculates this sum
of squared residuals. Line [14] stores the results generated by the loop and
line [15] ends the loop. Line [16] finds the row number of the result matrix in
which the selection criterion is minimised. Lines [17]-[20] display the results.

- Curvature

1 1 1
0 20 40 60 g0 100 120
Waturity (manths)

Figure 5.1: Nelson-Siegel yield curve factors

(c¢) K. Nyholm, 2007 page 86

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Slope factor sensitivity
0s8r

Lewvel factor sensitivity

0Bk

Effect

0.4F

02r

Curvature factor sensitivity

D 1 1 1 1
0 20 40 60 g0 100 120

Maturity

Figure 5.2: Nelson-Siegel factor sensitivities (A = 0.08)

5.2.2 Svensson and Soderlind

A four factor extension of the Nelson-Siegel factor loading matrix is suggested
by Soderlind and Svensson (1997). In practice, this extension comprises a
second curvature factor loading, giving the model additional degrees of free-
dom to better fit observed yields. A formulation of the Svensson-Soderlind
model is given in (5.3).

Y, (1) =G ay + v, (5.3)
where
1 1_exf\)(7_—1/\lﬂ) 1—ex§\>(;)\17'1) — exp (—)\17—1) %;)‘271) — exp (—)\27'1)
o 1 1—ex§f;2>\172) 1—eX§;}‘1T2) —exp (—A1T2) % — exp (—A2T2)
1 1—ex§§¥?1m) 1-6*55;;1”) —exp (—\i77) %;TMW) — exp (—Ao77)
(5.4)

Here, a collects the yield curve factors, {level, slope, curvaturel, curvature2}
and G comprises the assumed factor loading matrices. It is straight forward

(c¢) K. Nyholm, 2007 page 87

SAA in Fixed Income Markets: A Matlab Based User’s Guide

to adapt the Matlab(R) code presented in Section 5.2.1 to fit the Svensson-
Soderlind model.

[1] Y = [2.17 2.47 2.85 3.39 4.01 4.31 ...

[2] 4.48 4.58 4.65 4.70 4.74 4.77 4.79]";

[3] tau = [1 3 6 12 24 36 48 60 72 84 96 108 120]’;

[4] nObs = length(Y);

[5] z = 1;

[6] for (j=1:50)

[7] L2 = j/200+0.01,

[8l for (k=1:50)

[9l Ll = k/200+0.01;

[10] G = [ones(nObs,1) ...

[11] (1-exp(-Ll.*tau)) ./ (L1l.*tau) ...

[12] (1-exp(-Ll.*tau)) ./ (Ll.*tau)-exp(-L1l.*tau) ...
[13] (1-exp (-L2.*tau)) ./ (L2.*tau) -exp(-L2.*tau)];
[14] alpha = G\Y;

[15] u = Y-G*alpha,

[16] stderr = sqgrt(diag ((u’*u)/(length(Y)-4)*pinv(G’'*G)));
[17] Sum.u2 = sum(u.’2);

[18] Res(z,:) = [Sumu2 alpha’ L1 L2];

[19] z=zZ+1;

[20] end

[21] end

Compared to the Nelson-Siegel code, an additional loop is added to cater
for the additional curvature time-decay parameter to be estimated, see line
[6]. Naturally, also the factor sensitivity matrix, G, is adapted in line [13]
according to equation (5.4).

5.3 Arbitrage Free Models

Lets start with a disclaimer! It is well beyond the scope of the present book to
give an in-depth treatment of arbitrage-free pricing and corresponding yield
curve model construction. There are many excellent books that already cover
this area such as, among others, Rebonato (1998), Brigo and Mercurio (2001),
Bjork (2004), Cairns (2004) and James and Webber (2000). The approach

(c¢) K. Nyholm, 2007 page 88

SAA in Fixed Income Markets: A Matlab Based User’s Guide

taken in the current exposition is instead very applied indeed. We start
by assuming the existence of two general ”axioms” that help us construct
arbitrage-free interest rate modelling: we have full faith in these axioms
and do not question them, even if we do not fully understand where they
come from and their deeper meaning. Based on this foundation, we can then
procede and derive yield curve modelling expressions for some of the classical
no-arbitrage yield curve models and implement them in Matlab.

Axiom 1: The price P of a bond at time ¢ with maturity 7 can be written
as:

P(r)=exp[A (1) + B (1) * X¢], (5.5)

where A and B are functions of the maturity 7, and X; collects the factors
that explain bond prices / yields. A and B can be In this section we will
assume that there is only one yield curve factors X and that it is equal to
the short rate, i.e. the interest rate for 7 = 0. Hence, we set r; = X;. An
implication of Axiom 1 is that the yield-to-maturity can be written as:

y(r), = = [A(r) + B(r) » X, (5.6)
if yields are defined as:
o) = BP0

Axiom 2: It is assumed that the process followed by the short rate can
be written as

dr =m(r) *dt + s (r) * dz,

where d represents the first difference operator in continuous time, in discrete
time this would equal A. So, we are expressing how the changes in r evolve
over a short time inteval, dt. The variable m (r) is the mean of the process,
which is allowed to depend on the level of the short rate at time t, and s (r;)
is the volatility of the process, which like the mean, can depend on the short
rate level. And, Z is a Brownian motion, i.e. the generator of random noise
around the mean path followed by dr, where Az = ex+/At, and e ~ N (0,1).

In the absence of arbitrage it can be shown that the fundamental partial
differential equation (PDE), which the bond price must obey, can be written

(c¢) K. Nyholm, 2007 page 89

SAA in Fixed Income Markets: A Matlab Based User’s Guide

as:

10°P oP oP
§WS2+W{m_W*S}+E_TP:O’ (5.7)

where the price of the bond at maturity is assumed to pay the principal,
hence P (T) = 1, and 7 denotes the market price of risk. In order to use
(5.7) we need to be able to calculate the first and second partial derivatives
of P with respect to the short rate r, and the the first partial derivative of
P with respect to time, t. Matlab(R) can be used to validate the derivatives
we find when doing the calculations by hand. To this end the symbolic
calculation feature can be used.

[1] syms r P A B t;

[2] P = exp (A+B*r);

[3] disp(’first derivative of P with respect to r')

[4] diff(P,r)
[5] disp(’second derivative of P with respect to r’)

[6] diff (diff (P, r))

Where line [1] defines the relevent variables to be used in the symbolic cal-
culations. Line [2] defines the pricing function and the remaining part of the
displayed code calculated first and second derivatives of the pricing equation
with respect to the short rate. The calculation for the first derivative of the
price with respect to time is not shown in the above matlab code. Recognis-
ing that ¢t and 7 are inversely related i.e. as time progresses the maturity of
the instrument is reduced and applying the chain rule for differentiation (see
annex) will allow us to calculate the time-differential of P. The calculated
derivatives are shown below:

%—]: = B(r)xP

0?pP 2

orP [dA(r) dB(7)

T Ir + 7T x7| *x —P.

3The derivation of the fundamental pricing PDE can be done using Ito’s lemma and
a hedge arguments between two bonds with different maturities, see Bjork (2004, Section
21.1)

(c¢) K. Nyholm, 2007 page 90

SAA in Fixed Income Markets: A Matlab Based User’s Guide

These derivatives are substituted into (5.7) to give:

dA (1) N dB ()

P—rP =
o o * 7| * T 0

1
§*B (7)2*P*s2+B (T)*Px{m — m* s}—

where it is seen that P enters in all the terms. Dividing by P and re-organising
gives the following equation:

1 s o dA (1) dB(7)
5*3(7)*3 +B(1)*{m —m*s} — dr dr

which together with the boundary condition mentioned above, i.e. P (T') = 1,
form the basis for our derivation of a closed form solutions to a classical short
rate model as presented below. To this end we use Matlab(R)’s symbolic cal-

culation package, in particluar the function dsolve. It is intuitively observed
that (5.8) may be split into to ODEs, one containing %(:) and another con-
taini dB(r) 4

aming —ar -

xr—r =20, (5.8)

5.3.1 Vasicek

In this section we apply the above illustrated solution technique for the Va-
sicek short rate model (see, Vasicek (1977) and Rebonato (1998, p.239-242))
with the purpose to derive the corresponding yield curve expression. The
following short rate process is assumed:

dr =k (0 —r)dt + odz, (5.9)

which is a continous-time version of an autoregressive model with one lag,
also called an Orenstein-Uhlenbeck process. This process is mean-reverting
around the level 6, and the mean-reversion speed is given by x. In order to
use (5.8) we need to find the appropriate m and s in (5.9). These variables
are:

m = k(0—r),

s = o,

4Lund (1998) gives an excellent in-depth presentation of continuous-time yield-curve
models and shows in detail how to solve the term-structure equation using the PDE
approach. He also presents the solution to some classical models, in particular, Vasicek
(1977), Merton (1973) and Cox, Ingersoll, and Ross (1985)

(c¢) K. Nyholm, 2007 page 91

SAA in Fixed Income Markets: A Matlab Based User’s Guide

which inserted in (5.8) gives:

dA (1) _dB (1)

- ~—er—r =0. (5.10)

%*B (7)2*02+B (T)x{x (0 —r) —mx0}—

We solve this eqution using Matlab(R)’s symbolic toolbox.
[1] syms £ BA s kmp r t DA DB
[2] £f1 = 0.5*B"2*s"2+B* (k* (m-r) -p*s) -DA-DB*r-r
[3] collect (fl,r)
[4] (-B*k-DB-1)*r+1/2*B"2*s"2+B* (k*m-p*s) -DA
Line [1] defines the symbolic variables needed. Note that the variables in
(5.10) are translated into Latin counterparts to ease notation and that the
dependency of B on 7 is suppressed. Line [2] defines expression (5.10) and line
[3] isolates the underlying factor, 7. We have now the two ordinary differential
equations needed and the closed form yield equation for the Vasicek model
can be found using dsolve.
[1] dsolve(’-B*k-DB-1=0',’'B(0)=0")
[2] -1/k+exp(-k*t)/k
[3] B = -1/k+exp(-k*t) /k
[4] f2 = 1/2*B"2*3"2+B* (k*m-p*s) -DA

[5] dsolve(’1l/2*(-1/k+exp(-k*t)/k) " "2*s"2+(-1/k+exp(-k*t) /k)* (k*m-p*s) -DA=0','A(0)=0"

[6] 1/2/k"2*s 2%t+1/k"3*s 2%exp (-k*t)-1/4/k 3*s 2%exp (-2*k*t) -m*t+. ..

[7] 1/k*p*s*t-1/k*exp (-k*t) *m+1/k"2%exp (-k*t) *p*s+. ..

[8] 1/4% (-3*s72+4*k"2*m-4*k*p*s) /k"3

Line [1] defines the ODE for the first part of the problem involving the term
B (1), and line [2] gives the answer. In line [3] we set the solution equal to B.
Line [4] substitutes the solution from the first ODE into the second ODE and
line [5] solves it. Lines [6] and [7] contain the somewhat messy solution as
found by Matlab(R).° After some manipulation of this expression, the yield
curve equation for the Vasicek model can therefore be summarised as:

SWriting ”pretty(dsolve(...))” gives a solution that is a bit easier to read.

(c¢) K. Nyholm, 2007 page 92

SAA in Fixed Income Markets: A Matlab Based User’s Guide

1
y(r), = —;*[A(T)+B(T)*Tt], (5.11)
e " —1
B = L
TxO T*O*T
A(r) = B(T)*|: p }—9*7—1—7&
o?) 2% e T 2 2xT
R T (512

The following Matlab(R) script implements the above solution.
[1] tau = (1:1:120)";
[2] nTau = length(tau);

[3] p=0.20; s=0.15; k=0.30; m=5; r=4;

[4] B = (exp(-k.*tau)-1)./k;
[5] A = B.*x(((p*s)/k)-m) - m.*tau + (p.*s.*tau)./k +(s72/(4*k)).*(-(B."2)...
[6] + (2%exp(-k.*tau)-2)./(k"2) + (2.*tau)./k);
[7] v = -(1./tau) .* (A+B.*r);

Line [1] decides the maturity span for the calculated curve. There monthly
maturities are chosen having a step length of one month and a maximum
maturity of 10 years. Line [3] specifies the input parameters. Lines [4] and
[5]-[6] implements the formulas derived above and finally, line [7] calculates
the yield curve and stores it in the variable y.

5.3.2 Multi-factor models: an example

A major advantage of the no-arbitrage yield curve models is that they, by con-
struction, ensure consistency between the time-series evolution of the short
rate and the shape and location of today’s yield curve. Loosely speaking,
this consistency embodies the no-arbitrage restrictions. Consistency between
short rate dynamics and the shape and location of the yield curves is not nec-
essarily ensured by all yield curve models. In this connection it is instructive
to have another look at, e.g. the Nelson-Siegel yield curve model. When
re-examining this model, it is clear that it is completely silent on the relation
ship between the yield curve shape and the short rate’s time-series evolution,
or in general, the time-series evolution of the underlying yield curve fators. If

(c¢) K. Nyholm, 2007 page 93

SAA in Fixed Income Markets: A Matlab Based User’s Guide

the Nelson-Siegel model is set in a dynamic model context, as e.g. suggested
by Diebold and Li (2006), this is even more evident. First we repeat the
yield curve equations (5.1) and (5.2) from the above section:

Yi(r)=H -3, +e, and (5.13)
1 1—ex§£:/\71) 1‘“&’5:)‘“) —exp (—A71)
1 1—exp(—A72) 1—exp(=A712) exp (= A7
m=|! T ORI

Lexp(-Arr) 1—exp(—Arr)
1 eX;)TT TT exi\)TT TT) exp (_)\TT)

and then, in accordance with e.g. Diebold and Li (2006) a certain time-series
evolution is hypothesised for the three-yield curve factors collected in f3:

Be=Ff (Biejs Ze) =k + Fx By + v (5.15)

This equation simply states that the time-series evolution of 5 can be mod-
elled as a function of lagged (’s and exogenous factors, for example, as a
function of a constant £ and 3,_;. The actual function form is not important
here; what is important is that the parameters in (5.15) do not enter in equa-
tions () and (). This illustrates the lack of consistency in the Nelson-Siegel
model, and in all other not—necessarily arbitrage-free yield curve models, be-
tween the time-series evolution of the underlying yield curve factors and the
shape of the yield curve.

Turning to the Vasicek model, we see no similar disconnect. In fact, it
is seen that the no-arbitrage consistency is hard-coded into the model, since
the parameters that describe the evolution of the short-rate in (5.9), i.e. &, 0,
o, and the market-price of risk 7, all enter the yield curve equation (5.11).

The Vasicek model is an arbitrage-free one-factor model, and the single
factor modelled is the short-rate. The Nelson-Siegel model is a three factor
model that is not necessarily arbitrage free. Naturally, a three factor model is
more flexible than a one-factor model, and can thus better capture relevant
features of yield curves than a one factor model can. It is shown by e.g.
Duffie and Kan (1996), Dai and Singleton (2000), and a large body of text
books of which some are cited above, how one can obtain multi-factor yield-
curve models that are arbitrage free. One common feature of this modelling
philosophy is that the yield curve factors are treated as being un-observed and

(c¢) K. Nyholm, 2007 page 94

SAA in Fixed Income Markets: A Matlab Based User’s Guide

hence needs to be estimated or they are found directly using e.g. the approach
of Chen and Scott (1993). Nonwithstanding this, it can be an arduous task
to estimate such no-arbitrage multifactor models. A useful alternative is to
derive a no-arbitrage version of the Nelson-Siegel class of model as it is done
by Christensen, Diebold, and Rudebusch (2007). Another way to incorporate
no-arbitrage restrictions on the yield curve and its dynamic evolution over
time, is by assuming that the yield curve factors are observable. Then it
is possible to apply a two-step estimation procedure as illustrated by Ang,
Piazzesi, and Wei (2006). This procedure is applied below using Nelson-
Siegel yield curve factors; the exposition draws heavily on Coroneo, Nyholm,
and Vidova-Koleva (2007).
At the outset we specify the yield curve equation:

Yi(t)=a+0b- 8, +¢, (5.16)

where 3, as in (5.13) represent the Nelson-Siegel yield curve factors. It
is noted, however, that (5.16) contains an additional constant term, a, in
contrast to (5.13), or put differently, it is implecitly assumed by the Nelson-
Siegel yield curve model that a = 0. However, in general it can be observed
that @ and b in (5.16) play the same role as H in the Nelson-Siegel model.
The dynamic evolution of the yield curve factors is assumed to be governed
by the following first order autoregression model:

By =pu+®- B, +u, ug ~ N (0,287). (5.17)
The parameters in (5.16) are defined in the following way:

A,
a, = ——
-
B
by = ——, 5.18
. (5.18)

where, A and B can be found via recursive formulae®:

1
A = AT+BTT'(M—E‘Wo)+§BTTEETBr—A1,

BI., = Bl (®@—-%-m)— B, (5.19)

6 Among others, Ang and Piazzesi (2003, appendix A) and Monch (2006, appendix A)
show how these recursive formula can be derived.

(c¢) K. Nyholm, 2007 page 95

SAA in Fixed Income Markets: A Matlab Based User’s Guide

and where A and B are determined from what is called the short-rate equa-
tion, because it links the evolution of the rate for a short maturity, r, to the
yield curve factors in the following way:

re=ay+ by B, + v (5.20)

In the arbitrage-free model setup the functional form of the market price
of risk is explicitly formulated as a linear function of the yield curve factors:

Atzﬂo—i-?Tl'ﬁt (521)

It is the recursive structure and the fact that A; and B; depend on the
parameters that govern the dynamic evolution of the yield curve factors, as
well as the market price of risk, that ensures internal consistency of the model
and hence that it excludes arbitrage, as it was the case for the Vasicek model.
In the below Matlab programs we show how this multi-factor no-arbitrage
model can be estimated. It is a quite involved process and we do the imple-
mentation in small steps. In summary the game plan is the following:

1) extract Nelson-Siegel yield curve factors and standardise them;

2) estimate pu, ¢, and ¥ from (5.17);

)
)

3) estimate ay, and by from (5.20);

4) calculate a, and b, using (5.19), (5.18) and (5.21);
)

5) iterate over 2, 3, and 4 to minimise the squared residuals from (5.16);

We already know how to solve step (1) from the previous section 5.2.1 on
the Nelson-Siegel model. To facilitate easier convergence in the estimation
set we also standardise the observable factors by subtracting their mean and
divide by the standard deviation. The estimation involved in step (2) will,
strictly speaking, first be presented in section 7.2. However, for now it is
enough to know that the involved model can be solved using OLS regression.
Hence, step (2) can be completed by applying the techniques learned in sec-
tion 2.6. Also step (3) can be solved using an OLS regression. In the following
we will therefore assume that steps (1), (2) and (3) have been performed and
the relevant results have been stored in matrices called: beta=Nelson-Siegel
factors, m=pu, F=®, S=%, al=a;, and a2=as.

(c¢) K. Nyholm, 2007 page 96

SAA in Fixed Income Markets: A Matlab Based User’s Guide

By examining the programs called NA_est.m, NA_a_b, and N A_y_optim,
that acompany the book, the reader can see how the described no-arbitrage
yield curve model can be estimated. N A_est.m is the main program, which
completes step (1), step (2) and step (3). It also performs step (5) by using
the Matlab(R) fmincon function to estimate the parameters of the model.
In particular the function NA_y_optim is minimised, as seen by the call to
fmincon in
(1% ;

[2]1% Estimates a multi-factor No-Arbitrage yield curve model

[31% program NA_est.m

...

[64] [out.p, fval, exitfflag] = fmincon(@NA.y.optim, pstart, [1, [I, [1, (], 1lb, ub,
(], options.);

The function N A_y_optim contains the calculation of (5.16). In order to do
this, it calls the function NA_a_b, which calculates the recursions indicated
by (5.19). Finally, NA_y_optim returns the squared residuals between the
observed and estimated yields, which is the object that is minimised by
fmincon. An example of the output generated using the above delinated
no-arbitrage model is shown in Figure 5.3. This figure shows observed and
estimated yields, and the estimation error.

(c¢) K. Nyholm, 2007 page 97

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Observed yields

i 1 1 1 1 1 d
0 100 200 300 400 500 500 700
Estirnated yields

i i | | 1 1
0 100 200 300 400 500 B00 700
Estirnation errors

1 1 1 1 1 1
0 100 200 300 400 500 500 700

Figure 5.3: Observed and estimated yields from a no-arbitrage model

(c¢) K. Nyholm, 2007 page 98

Chapter 6

Asset Allocation

6.1 Introduction

This chapter presents and applies some of the central ideas of financial theory.
The presented tools and techniques aids the process of making informed
decisions and to better understand the financial markets. In particular, the

chapter shows how to implement the principles of portfolio optimisation in
Matlab(R).

Learning objectives

Understand what diversification is

Be able to derive efficient frontier portfolios

Know the basic asset pricing models

Apply the portfolio principles to fixed income securities

6.2 Efficient portfolios

Mean-variance portfolio theory was developed by Harry Markowitz in the
1950ies.! He showed how efficient investment portfolios would form a frontier

'The matrial presented in this section draws in particular on Huang and Litzenberger
(1988), Luenberger (1998) and ?.

99

SAA in Fixed Income Markets: A Matlab Based User’s Guide

in the expected return/standard deviation space subject to the following
assumptions:

e there are no frictions such as taxes and transaction costs

e investment vehicles are infinitesimally diversible so that fractions of
these can be traded

e short-selling is allowed

e investors are concerned only about expected return and risk; the latter
being defined as the standard deviation/variance of the expected return

e the returns on the assets in the economy are individually different, and
cannot be expressed as linear combinations of other traded assets in the
economy; otherwise the covariance matrix of returns would be singular.
In other words, the covariance matrix is assumed to be invertible.

e N = 2 assets trade in the economy

Let’s define 7 to be the vector of expected returns, C' to be the covariance
matrix of the asset returns, and w to be the vector of portfolio weights, i.e.
how much wealth that is invested in each asset. Much of the work that leads
to successful implementation of asset allocation decisions, be it strategic as
well as tactical decisions, lies in proper estimation of r and C so that w, the
decision variable, can be determined. However, below in the derivation of
the mathematics of the efficient frontier » and C' are assumed to be known
with certainty. The actual estimation of r and C' is a separate issue.

Since the investors are concerned only with expected return and risk, the
investment portfolios that seem attractive can be represented as a frontier in
the expected return - standard deviation space. It is illustrated in the Figure
6.1 that for every level of risk the one portfolio with the highest return is most
attractive; similarly, for every level of expected return the portfolio having
the lowest standard deviation is most attractive. The efficient frontier that
is derived from either of these approaches i.e. either by maximising expected
return for all levels of risk, or by minimising risk for all levels of return. Each
possible portfolio combination is identified by an ”"x” in the figure and the
efficient frontier by the bold concave line.

The question is now how the portfolio weights w; can be derived on the
basis of r and C; here j counts the observations/portfolios that together

(c¢) K. Nyholm, 2007 page 100

SAA in Fixed Income Markets: A Matlab Based User’s Guide

20

[}
T

1 1 1
4 B 3 10 12 14 16 18 20
Standard deviation

Figure 6.1: Example of efficient and inefficient portfolios

form the efficient frontier. These weights refer to how an investor’s capital is
distributed between the available investment opportunities in the economy.
It is assumed that every investor dedicates a certain portion of her capital
to investment purposes; therefore the portfolio weights sum to unity. Or put
differently, the portfolio weights are always stated in percentage points or as
fractions - they therefore sum to 100%. This idea is also sometimes referred
to as the ”full investment constraint”.

It is a challenge for the investor to choose the portfolio weights wisely.
Firstly, this choice depends on the expected returns, standard deviations
and covariances that one expects will materialise in the future. Secondly, it
depends on the investors risk preference / aversion. In fact, much of financial
theory concerns the calculation and choice of these weights, where the choice
is assumed to be done in an optimal way. In this connection ”optimality”
refers to the adherence of the characteristics of the portfolio to the risk-return
preferences of the investor.

The two central inputs to the investment process: the expected return
of the portfolio and its standard deviation are defined below. The expected
return of a portfolio is a weighted average of the instrument returns, where

(c¢) K. Nyholm, 2007 page 101

SAA in Fixed Income Markets: A Matlab Based User’s Guide

the weights are defined by the portfolio weights. Hence:

N
Tp:an*Tn:wT*r. (6.1)
n=1

The portfolio variance is not a weighted average of the asset variances - if it
was it would ignore covariance effects i.e. the joint movements of the assets
over time. The statistical definition of the variance of two variables is:?

Var (a* X, +bx* Xo) = a®xVar (X;) +b%+Var(Xs) +2xaxbxCov (X1, Xy) ,

where the Xs are variables e.g. time-series of returns of two bonds, and a, b
are constants. The variance of a portfolio of several variables can the be
written as a generalisation of the above:

N N
Var(rp):JZ:Zan*wm*amm:wT*C*w (6.2)
n=1m=1
Expressions (6.1) and (6.2) are stated both with sums and in matrix form.
In what follows mainly the matrix form will be used.
As illustrated in Figure 6.1 the optimisation problem faced by investors
can be equally well formulated in the two following ways, where the sub-script
p stands for ”portfolio”:

max Tp:TT*'lU

st.
wT*C*w:U}%
whx1=1
and
i 2—1 T4 O % (6.3
min o, = Sw w .3)
st.
wT*r:rp
whsx1=1

2See e.g.Greene (1993)[p.65].

(c¢) K. Nyholm, 2007 page 102

SAA in Fixed Income Markets: A Matlab Based User’s Guide

The first optimisation problem states that the portfolio return should be
maximised for a given level of risk, while also fulfilling the full investment
constraint i.e. that the sum of the portfolio weights sum to unity; the 1
refers to a vector of ones of appropriate dimension. This corresponds to the
vertical arrow in Figure 6.1, and it is easy to see that the efficient frontier
can be traced out by repeating the optimisation exercise for different levels
of portfolio risk 012,. The second optimisation problem corresponds to the
horizontal arrow in Figure 6.1 and finds the minimum risk portfolio for a
given target level of return while also fulfilling the full investment constraint.
The constant in front [%] is added for convenience; when maximising or min-
imising a function it is naturally the same to optimise f (z) and k * f (x),
E > 0. It is equally easily seen that a discrete set of points on the effi-
cient frontier can be calculated by varying the target return level. However,
Following Markowitz, there exists a more elegant way of characterising the
efficient frontier instead of solving the above problems for different target
levels of 012, and r,. This solution is obtained via the Larange approach in
the following way: a) equating the constraints to zero; b) substituting each
constraint into the objective function and multiplying each constraint by a
positive constant; c) calculating the first derivative of the function with re-
spect to the unknowns and equate the first derivatives to zero; d) then solve
the equations for the unknowns. This process is completed below:

min Ly, x,y = %wT *Cxw+ A (rp —w! « r) + v (1 —w?l % 1) , (6.4)

and the solution is obtained by calculating the first derivative of (6.4) with
respect to (w, A,7y). Since L is composed of three terms, each term can be
calculated separately:

oL
90 Clnn) * Wity — A1,1) * 1) = Y1) * L) = 0@y (6.5)
oL
a = Tpayy — wa,n) *T(n1) = 0(171) (66)
oL
8—7 = 1(171) — ’LU,(ILH) x]-(n,l) = 0(171). (67)

It can be seen via the subscripts showing the dimensions of the included vari-
ables that the above list of first derivatives form a n + 2 system of equations

(c¢) K. Nyholm, 2007 page 103

SAA in Fixed Income Markets: A Matlab Based User’s Guide

with n + 2 unknowns, where n is the number of assets covered by the eligible
investment universe. Equation (6.5) can be solved for the asset weights w in
the following way:

Cxw=A*xr+vx1
$ (6.8)
w=AxC xr+yxC k1 (6.9)
C will in general have full rank because the assets included in the investment
universe will not be perfect substitutes (otherwise they would not be different
assets to begin with) and for the same reason it will not be possible to form
linear combinations of the assets that are identical. When C has full rank
it is invertible and the above calculation is possible. Equation (6.9) shows
the portfolio weights as a function of (C,7, A,7). The first two are direct
inputs to the investment process, and although they may be very difficult to
estimate to a sensible level of precision, for the purpose at hand they can be
regarded as ”observed” variables. What is not known are the values of A and
v, and since these parameters follow from the way the optimisation problem
is solved, we do not have any way of guessing their values or estimate them
from other observed variables.? Instead their values have to be derived. One
idea in this direction is to form two equations with two unknowns. Starting
with (6.9) and premultiplying with 7 gives:

rTw=AxrT«C xr+yxrTxC 11
|}

rp:)*(rT*C’_l*r)+'y*(rT*C’_1>k1)
g

rp =A% X +yxY.

Taking again (6.9) and premultiplying with 17 gives:

3In economic optimisation theory A and v are referred to as shadow prices for the
imposed constraints.

(c¢) K. Nyholm, 2007 page 104

SAA in Fixed Income Markets: A Matlab Based User’s Guide

1Tw=Ax1"5C xr+yx1TxC1x1
T
1=Xx (1"« C " sr) +yx (1T C7' 1)

0

1:)*YT+7>|<Z.

To summarise, the two equations with two unknowns can then be written as:

HNEIIn

since it is noted that the entries in the 2-by-2 matrix on the RHS are all
scalars so, Y7 =Y. Let’s define:

= T Clxr
T« Clx1=1T%Clxr
= 1TxC1tx1
= XxZ-Y2%

o N <X
I

This system of equations can be solved by Cramer’s rule which states that:

r, Y
A_det([1 Z_)_Z*TP—Y
_dt X Y71\ D ’
“\ly 7z
and
er_
e[7]) xova,
(XYY Db
Ny 7z

Based on this it is now possible to express the portfolio weights as functions of
C and r alone. An expression for w can be found by inserting the expressions
for A and v in expression (6.9):

(c¢) K. Nyholm, 2007 page 105

SAA in Fixed Income Markets: A Matlab Based User’s Guide

w, =)\p*C’_l*r—l-vp*C'_l*l

= 7Z*%_Y*C’_l*r+7x_;*rp*0_l*l
—1)(0—11}/(]—1 ZxC! Y*«Ctx1l
= 5[* x1—Y % xr+ 7 % *r kT, — Y % x 17
1
- 5[(X*C_l*l—Y*C_l*T’)—l—(Z*C_l*T’—Y*C_l*l)*Tp]
= g+ hxm, (6.10)
where
1 ~1 -1
g = B*(X*C x1—-Y xC >|<7“)
1

h = D*(Z*O_I*T—Y*O_l*l).

In essence (6.10) shows how all unique and distinct frontier portfolios can be
generated simply by varying the target return r,. This is not a surprise since
the same conclusion follows from the optimisation problem written in (6.3);
however, the benefit of (6.10) is that it shows the solution directly and does
not require numerical optimisation techniques to find a solution as it is the
case for (6.3).

Let’s see this used in practise. The following Matlab(R) script implements
the above expression and derives the efficient frontier. To make sure that
the calculations are correct we compare the derives efficient frontier using
(6.10) to a "brute-force” calculation of the efficient frontier. The latter loops
over a large set of possible combinations of asset weights, checks whether
the allocation is feasible (i.e. whether the weights sum to unity) and then
stores the standard deviation and expected return of all feasible portfolios.
It should be clear that the ”brute-force” calculation does not constitute a
viable calculation scheme, especially when the number of assets grows.

[1] % --- Input parameters ---
[2] r = [3.25; 5.75; 7.5; 12.3];
[31 ¢ = [25.0 24.5 33.0 37.5;

[4] 24.5 49.0 50.0 63.0;

(c¢) K. Nyholm, 2007 page 106

SAA in Fixed Income Markets

[5]
[e]

33.0 50.0 121.0 66.0;

37.5 63.0 66.0 225.0 1;

[7] one = ones(4,1);

[8]% --- Expression for the weights ---
[9] X = r’*inv(C) *r;

[10] Y = r’*inv (C) *one;

[11] Z = one’*inv (C) *one;

[12] D = X*Z-Y"2,

[13] g = 1/D* (X* (inv (C) *one) -Y* (inv (C) *r));
[14] h = 1/D*(Z* (inv(C)*r)-Y* (inv (C) *one));
[15] rmax = 20;

[16] romin = -5;

[17] incr = 0.05;

[18] zz = 1;

[19] for (j=rmin:incr:r.max)

[20] w_j = g+h*j;

[21] Wp(zz,:) = wj’;

[22] Rp(zz,1) = w_j’*r;

[23] S.p(zz,1) = sqgrt(w-j’'*C*w_j);
[24] zz=2Z+1;

[25] end

[26]% --- Brute Force calculation ---
[27] nObs = 10;

[28] zz = O;

[29] for (j=-1:0.1:1)

[30] for (k=-1:0.1:1)

[31] for (1=-1:0.1:1)

[32] for (m=-1:0.1:1)

[33] wbf = [jikilim];
[34] if (sum(wbf)==1)
[35] 2z = zz+1;

[36] Wbf(zz,:) = wbf’;
[37] R.Dbf(zz,1) = wbf’*r
[38] S_bf (zz,1) = sqgrt(wbf’*C*w.bf
[39] end

[40] end

[41] end

[42] end

(c) K. Nyholm, 2007

: A Matlab Based User’s Guide

)3

page 107

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[43] end

[44] figure

[45] plot(S.p,Rp,'k-',’linewidth’,2), ...

[46] xlabel (' Standard deviation’), ylabel ('Expected return’);

[47] hold on

[48] plot (S-bf,R.bf, 'kx’,’linewidth’,0.25);

The clear disadvantage of the brute force calculations as presented by lines
[26]-[44] is that the number of for-loops increases by one for each additional
asset that is included in the eligible investment universe; in addition it calcu-
lates some information that is not particularly useful namely all the interior
points portfolios i.e. the portfolios that are not located on the efficient fron-
tier. The implementation of the formula in (6.10) circumvents both of these
drawbacks by only calculating frontier portfolios and as such only requires
one loop running over the target return. This is illustrated in lines [19]-[25].
Lines [9]-[14] define the input variables facilitating the calculations as illus-
trated above and lines [15]-[17] define for which return targets the efficient
frontier should be calculated and in which step size. Within each of the loops
the calculation of the portfolio metrics is performed following the definitions
in (6.1) and (6.2). Figure 6.2 illustrates the results generated by the script
file. The ”"x”s in the figure represent the brute-force calculations and the
bold line the results obtained when applying (6.10).

6.3 Diversification

As can be seen from the expression of the portfolio variance in equation (6.2)
there are two terms to the calculation: one comes from the variance of the
eligible investment assets i.e. from the diagonal of C', when n = m , the
other from the covariance effects, i.e. from the off-diagonal elements of C,
when n # m. Expression (6.2) can be rewritten to reflect this more clearly:

N N N
2 _ 2 2
o, = E w;, k0 + g E Wr % Wiy % O (6.11)
n=1 n=1 m=1 g
m#n

Variance effects Covariance effects

(c¢) K. Nyholm, 2007 page 108

SAA in Fixed Income Markets: A Matlab Based User’s Guide

20

Expected return

24

Standard deviation

Figure 6.2: The possible investment frontier

To illustrate the effect of diversifying ones’ capital among many assets, as-
sume that 1/Nth of the investor’s capital is invested in each of the N assets
in the eligible investment universe. Using this assumption in (6.11) leads to:

012, = Z(l/N)2 *Ui—i-z Z(l/N) % (1/N) % 0pm,

n=1 n=1 m=1
m#n
N N N
1 o; N-—1 Onm
- N;NJF N ;;N*(N—l)
1., N-1_
- No-j N On,m

where the factorisation of (1/N) outside the summation in the second row
leaves the remaining part of the first term equalling the average variance.
And, the factorisation of (N — 1)/N outside the double summation in the
second term of the second row, leaves the remainder equal to the average

(c¢) K. Nyholm, 2007 page 109

SAA in Fixed Income Markets: A Matlab Based User’s Guide

covariance.? Letting N approach infinity gives the following limits:

1
im0
N—1_

Onm — O-n,m‘

lim

N—o00
In other words: when the investors’ capital is well distributed among the
eligible investment vehicles, the risk that stems from the individual assets is
diversified away and what remains approaches the average covariance. Hence,
the covariance terms, in this case the average covariance, cannot be diver-
sified away. This part of the risk is also referred to as the systematic risk
of the portfolio. In reality it is (naturally) not possible to distribute the
capital between an infinite number of assets nor is it necessary for achieving
diversification benefits. In most cases the diversification effect is considerable
even when only fifteen assets are included in the portfolio and the marginal
benefit of including more than fifty assets is for all practical purposes equal
to zero.?

To illustrate the issue of diversification the Matlab(R) script below sim-
ulates a covariance matrix and calculates the variance of portfolios with an
increasing number of assets included.

[1] nObs = 100;

[2] bgn = 2;

[3] xx = (bgn+1l:1:n0bs)’;

[4] temp = tril (rand (nObs,nObs));

[5] temp = temp+temp’;

[6] std = rand(nObs,1)+1;

[7] corr = temp-diag(diag(temp))+diag(ones (nObs,1));
[8] cov = (std*std’).*corr,

[9] for (j=1:nObs-bgn)

[10] C = cov(l:j+bgn,1l:j+bgn);

4Note that there are N * (N —1) off-diagonal terms in the covariance matrix so dividing
the sum of the covariances by this factor gives the average covariance.

5This statement is only true when dealing with an investment universe where there is
one major risk factor, such as it is the case for equities and government bonds. This state-
ment is for example not true when investigating an asset universe comprising corporate
bonds.

(c¢) K. Nyholm, 2007 page 110

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[11] w = 1/j.*ones (j+bgn,1);
[12] sig2(j,1) = w’'*C*w
[13] end

[14] sig2pct = sig2./sig2(1,1).%*100;

[15] figure

[16] plot (xx,sig2pct),xlabel ('Number of assets in portfolio’), ...

[17] ylabel (‘Risk %');

The output of the script is shown in Figure 6.3, which confirms the above
mentioned diversification gains when including additional asset in the port-
folio. Tt is worth remembering, though, that the Matlab(R) script uses a
simulated covariance matrix which may not fully reflect covariance matrices
estimated from real life data. Still, the example proves the point and shows
how important it is to be aware of diversification benefits.

A description of the Matlab(R) script is given here: lines [1]-[3] define how
many entries there should be in the covariance matrix, i.e. how many assets
that are contained by the eligible investment universe, and that two assets
should be included in the first calculation. the "xx” in line [3] is simply a
counting variable used when plotting the result. Lines [4]-]9] simulate the
covariance matrix. Line [4] generates the lower triangular matrix from a
matrix of uniformly distributed random variables between zero and one. A
covariance matrix is symmetric and therefore the lower triangular part of
the matrix is taken so that a symmetric matrix can be generated in line
[5]. Line [6] generates a vector of standard deviations, one for each asset;
a lower bound of unity of the standard deviation is arbitrarily chosen. In
line [7] it is ensured that the diagonal of the correlation matrix is equal
to unity. Line [8] generates the covariance matrix following the calculation:
cov(xy1, x9) = std(x1)*std(zy)*corr(xy,x2). This is done through element-by-
element multiplication of the covariance and correlation matrices. Lines [9]-
[13] calculate the portfolio variance for an investment universe that increases
in size by one asset from one iteration to the next. The rest of the code plots
the results.

(c¢) K. Nyholm, 2007 page 111

SAA in Fixed Income Markets: A Matlab Based User’s Guide

100 T T T T T T T T T

a0 - A

80 - b

0r B

60 - b

a0 - B

Rizk %

ot .

30 B

a0 B

1 1 1 1
0 10 20 30 40 50 B0 70 80 a0 100
Mumber of assets in portfolio

Figure 6.3: Example of the diversification effect

6.4 The minimum variance portfolio

It is recalled that the efficient frontier comprises the portfolios that have
the lowest variance for a given level of return [see equation (6.3)]. A relevant
question to ask is then: what are the weights for the global minimum variance
portfolio? This portfolio is interesting because it tells us, based on a given
investment universe, what the level of risk and return is for the least risky
investment option, apart of course from the risk less asset, if such an asset
exists.5 Using the definition of the portfolio variance the global minimum
risk portfolio can be identified:

In asset pricing models the concept of a risk less asset is used as an anchor point,
and often the return on a short term government bond / bank account is used as a proxy.
However, it is worth emphasising that strong assumptions about the investment horizon are
implied by the choice of such a risk free invest alternative. For example, if the investment
horizon is one year (or longer) and a 1 month deposit rate is used as a proxy for the risk
free rate, it is not really risk free because the deposit matures after one month and thus
needs to be rolled over into a new deposit having a possibly different interest rate.

(c¢) K. Nyholm, 2007 page 112

SAA in Fixed Income Markets: A Matlab Based User’s Guide

2 T
o, = wp*C'*wp

wZ*C’*(A*C’_l*er'y*C’_l*l)

= A*wg*r+7*wg*1

AxTy, A+
Zxr,—=Y +X—Y>x<rp
= _— X -
D " D
1
= 5[2*7"2—2*}/*7‘1,—1—)(] (6.12)

where the second line follows from (6.9), the fifth line substitutes in the
expressions for A and ~ derived above, and the last line appears when reor-
ganising terms. Clearly, (6.12) is a quadratic equation in 7, with the following
minimum variance point:

{02 Vo - AxZx X —4xY? Y
Tmopy Fmopf = 1.2 = AxZx(Zx X -Y?2) Z

_ (% %) | (6.13)

Using this result to calculate the (x,y) coordinates for the minimum variance
portfolio (mvp) in the example used to produce Figure 6.2 gives 0y, =

V1/Z = 4.78; rp.p = 2.44. To calculate the weights that define the mvp,
(6.10) is used an the result for the return of the minimum variance portfolio
is inserted:

Y
Wmop = 94 +'h/*73nvp =g + h* Z?
C1x1
1T« C-1x1
which can verified by using the symbolic calculation capabilities of Mat-
lab(R):

[1] syms x y z r ic i f;

[2] £ = 1/(x*z-y"2)* (x*ic*i-y*ic*r)+1/ (x*z-y"2) * (z*¥ic*r-y*ic*i)*(y/z);

(c¢) K. Nyholm, 2007 page 113

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[3] pretty(simplify(f))

ans =

i*ic/z

Line [1] defines the symbolic variables that are needed. Line [2] defines f
as the expression that should be simplified, and line [3] asks Matlab(R) to
do the calculations. Since Z = 17 x C~! * 1, the weights for the minimum
variance portfolio are given by the row sums of the inverse covariance matrix
(C7! % 1) divided by the row and column sums of the inverse covariance
matrix. The latter is a scalar which makes sure that the calculated weights
sum to unity. Let’s confirm this calculation by using the four asset example
from above:

[1] % --- Input values ---
[2] r = [3.25; 5.75; 7.5; 12.3 1;
[3] ¢ = [25.0 24.5 33.0 37.5;

[4] 24.5 49.0 50.0 63.0;
[5] 33.0 50.0 121.0 66.0;
[6] 37.5 63.0 66.0 225.0];
[7] one = ones(4,1)
[8] % --- Doing the calculations ---
[9] w-mvp = inv(C)*one./ (one’*inv (C) *one)
[10] sigmvp = sqgrt (wmvp’ *C*w_mvp)
[11] r-mvp = w_mvp’ *r
w_mvp =
1.0127
0.1938
-0.12032
-0.086126
sigmvp =
4.7816

romvp =

Lines [1]-[7] determine the input values. Lines [9]-[11] implement the formu-
las; the results are ,,,, = 4.78 and ,,,,, = 2.44 exactly as above. The weights
for the mvp are found to be wy,,, = (1.0127, 0.1938, —0.1203, —0.0861).

(c¢) K. Nyholm, 2007 page 114

SAA in Fixed Income Markets: A Matlab Based User’s Guide

6.5 Asset weight constraints

All of the above conclusions and derivations assume that there are no con-
straints on the asset weights and that it is possible to short sell assets, i.e.
having negative weights in one or more assets covered by the eligible in-
vestment universe. Practical applications of portfolio optimisation will of-
ten impose constraints on given assets, either in the form of general maxi-
mum and/or minimum holding constraints on individual assets and/or asset
groups. For example, a commonly imposed constraint is a "no-short sales
constraint” for all assets. Once such constraints are permitted it is rather
difficult to derive closed form expressions for the efficient frontier, if possible
at all. In effect, the solution to the efficient frontier problem has to rely on
numerical techniques.

A general form of the portfolio optimisation problem is stated in (6.14):

min o2 = w] * C x w, (6.14)
st.

wl xr=r,

wlx1=1

b <w, <ub

G xw, < ubg

Here the new constraints three and four allow for lower and upper bounds
(Ib and ub, respectively) on the individual portfolio weights, and for lower
and upper bounds on groups of assets (lbg and ubg, respectively). The group
definition is contained in the matrix G which has number of rows equal to
the number of asset group definitions and columns equal to the number of
assets.

Matlab(R) contains a portfolio optimisation module called frontcon that
sells with the Financial Toolbox. However, to illustrate how portfolio opti-
misation subject to constraints can be implemented, and to assist the unfor-
tunate who do own the FinancialT oolbox, below an alternative to frontcon
is constructed. This function is called frontier and utilises the equations
derived in Section 6.2 when no constraints are imposed on the optimisation
problem, and a numerical solution to the objective function when constraints
are imposed. To produce the numerical solutions to facilitate calculations in

(c¢) K. Nyholm, 2007 page 115

SAA in Fixed Income Markets: A Matlab Based User’s Guide

the latter case, Matlab(R)’s optimiser fmincon is used along with the fol-
lowing calculation strategy:

a) Find the maximum return portfolio by solving:

max wh xr (6.15)
st.

wg x*x1=1

b <w, <ub

G * w, < ubg

b) Find the minimum risk portfolio by solving:

min w? * C * w (6.16)

st.
wlx1l=1
b <w, <ub
g x w, < ubg

c¢) Find a desired number of efficient portfolios between the minimum risk
and maximum return portfolios as the solution to (6.14) by varying the
return requirement w;‘f * 7 = 1, in appropriately defined steps.

This strategy is implemented in the Matlab(R) script below. Since the
program is a bit long its annotation will be split into shorter parts. Note that
no error-checks are implemented in the code. Hence it is not tested whether
the dimensions of the input arguments match and whether all necessary
inputs are provided. The implementation of an error-checking procedure is
left as an exercise at the end of the chapter.

[1] function [out] = frontier(in)
[2]%

[3]1% Chapter: Asset Allocation

(c¢) K. Nyholm, 2007 page 116

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[4]%

[5]1% Usage:

[6]1% [out] = frontier(in)
[71%

[8]% in (structure) :

[9]% .C - covariance matrix r-by-r

[10]% .R - vector of expected returns r-by-1

[11]1% .B - matrix of lower and upper bounds r-by-2

[12]1% .G - matrix of group definitions ngroups-by-r

[13]1% .GB - matrix of group bounds ngroups-by-2

[14]1% .N - number of points to be calculated on the frontier 1-by-1
[15]%

[16]1% out (structure):

[17]1% .RR - matrix of risk and return obs on the efficient frontier N-by2
[18]1% .W - matrix of weights for the frontier points N-by-r

[19]1% .mvp - vector of stdandard dev and return (in that order) for

[20]1% ...the Min Var portfolio

[21]1% .mvpW - weights for global minimum var portfolio

[22]%

[23]% date: October 2006
[24]% report bugs to: email@kennyholm.com

[25]%

The first line uses the key word ”function” that tells Matlab(R) that what
follows should be taken as one entity, and that the first argument collected
in hard brackets "out” is the return argument(s) of the function, which is
set equal to the function name with input argument(s) i.e. ”frontier” is in
this case the function name, and ”in” contains the input argument(s) to
the function. Lines [2]-[24] all begin with ”%” which means that they are
not processed by Matlab(R). Hence, these lines are only comments meant
to help the user. In fact, the first part of a function enclosed by "%” is
what Matlab(R) will return when the user types "help functionname” at the
command prompt. In our case, typing ”help frontier” will display a print
of the lines [2]-[24]. It is clear that structured variables are used as input
and output arguments to and from the function. Lines [8]-[14] explain the
input arguments while lines [16]-[21] delineate the output arguments. Lines
[23]-[24] report the date the function was written and who to complain to
when it doesn’t work!

(c¢) K. Nyholm, 2007 page 117

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[26] warning off all

[27] % --- Organising inputs ---

[28] C=in.C; r=in.R; B=in.B; G=in.G;, GB=in.GB; Np=in.N;

[29] nAssets = length(r);

[30] one = ones(nAssets,1);

[31] & --- Calculations for the global MVP ---

[32] w.mvp = inv (C) *one./ (one’ *inv (C) *one);

[33] sigmvp = sgrt (w-.mvp’ *C*w.mvp);

[34] rmvp = w.mvp’ *r;

Line [26] turns off warnings. This is not strictly necessary but ensures that
Matlab(R) doesn’t print messages that may confuse the user of the function.
Lines [27]-[30] organise the input variables, they so to speak unpack the
structured variable containing the relevant input arguments and generate an
auxiliary variable "one” that serves the role of the vector 1 used in Section
6.2. Lines [31]-[34] implement the expressions relevant for the minimum
variance portfolio when no constraints are imposed.

[35] % Optimisation without constraints

[36] if (isempty(B) & isempty(G))

[37] X = r’*inv(C) *r;

[38] Y = r’*inv (C) *one;

[39] 7Z = one’*inv (C) *one;

[40] D = X*Z-Y"2;

[41] g = 1/D* (X* (inv(C) *one) -Y* (inv (C) *r));
[42] h = 1/D*(2* (inv (C) *r) -Y* (inv (C) *one)) ;
[43] romin = 0;

[44] r.max = 2*max(r);

[45] incr = (r-max-r-min)*1/(Np-1);

[46] zz = 1,

[47] for (j=rmin:incr:rmax)

[48] w_j = g+h*j;

[49] Wpl(zz,:) = wi’;

[50] S.p(zz,1l) = sgrt(w-j’'*C*w.j);

[51] Rp(zz,1) = w.i’*r

[52] zZ=2Z+1;

[53] end

(c¢) K. Nyholm, 2007 page 118

SAA in Fixed Income Markets: A Matlab Based User’s Guide

The lines [35]-[52] implement the mathematics of the efficient frontier as
derived in Section 6.2. Line [36] checks whether constraints are imposed by
asking whether the matrix of asset bounds B and asset group definitions in
G are empty. If this is the case the calculations in lines [37]-[52] are applied.
Otherwise the lines below, following the solution strategy outlines in steps
(a)-(c) above, are applied.

[54] else

[55] options. = optimset ('LevenbergMarquardt’,b ‘on’,’'LargeScale’,’off’,’Display’,’'off’);
[56] [W.max] = fmincon(@(w)-w’*r, wmvp,G,GB,one’,1,B(:,1),B(:,2),[],options.);

[57] [Wain] = fmincon(@(w)w’*C*w, w.mvp,G,GB,one’,1,B(:,1),B(:,2),[],options.);

[58] romin = W_min’ *r;

[59] r-max = W_max'*r;

[60] incr = (r_max-r-min)*1/ (Np-1);

[61] zz = 1;

[62] for (j=rmin:incr:r-max)

[63] [w-j] = fmincon (@ (w)w'*C*w,wmvp,G,GB, [one’; r’],[1; j],B(:,1),B(:,2),[],options.);
[64] Wpl(zz,:) = wj’;

[65] S.p(zz,1l) = sgrt(w-j’'*C*w.j);

[66] Rp(zz,1l) = wj’*r;

[67] zz=72+1;

[68] end

[69] end

The ”else” in line [54] continues the ”if” statement from line [36]. Hence, if
constraints are imposed, and the calculations in lines [37]-[53] are not per-
formed, then the calculations in lines [54]-[69] are to be performed. Line [55]

specifies the ”options” i.e. how the optimisation function fmincon should be
called.” Line [56] solves (6.15) and line [57] solves (6.16). In should be noted
that the ”-” in front of the objective function in line [56], i.e. 7 — w? *r”,
implies that the function’s maximum is found. fmincon is designed to min-
imise functions, and ”minus-minimisation” is equal to maximisation. Line
[60] parcels the distance between the minimum and maximum attainable re-

turns into the desired number of discrete points for which the efficient fron-

"For more information on this please investigate the help function of ”optimset”, hence
type "help optimset” at the Matlab command prompt.

(c¢) K. Nyholm, 2007 page 119

SAA in Fixed Income Markets: A Matlab Based User’s Guide

tier portfolios should be calculated as specified through the input parameter
”in.N”. Lines [62]-[68] perform the calculation of the efficient frontier port-
folios following (6.14) for the different return targets defined by the for-loop
structure in line [62]. And, line [69] concludes the if-statement initiated in
line [36].

Finally, lines [70]-[73] collect the output in the structured variable: ”out”.
Line [70] generates a matrix of the standard deviation and expected return
of the frontier portfolios and line [71] collects the portfolio weights of the
frontier portfolios. Lines [72]-[73] collect the output relevant for the global
minimum variance portfolio i.e. the one derived without taking into account
the portfolio constraints as shown in Section 6.4.

[70] out.RR = [S_p R-pl;

[71] out.W = W.p;

[72] out.mvp = [sig.mvp r-mvp];
[73] out.mvpW = w_mvp;

The following example illustrates how the frontier function can be use.
Assume that the eligible investment universe comprises four assets having the
same expected returns and covariances as in the example on page 106, and
assume further that short selling is prohibited i.e. all asset weights must be
between 0 and 1, and that at least 25% of the portfolio should be allocated to
assets {2,3,4}. The first constraint is taken into account by the asset weight
bounds by defining

o O O
— e

0

To ensure that at least 25% of the capital is allocated to assets {2,3,4} we
use the asset group constraint, which is formulated as (see, equation 6.14):

g * w, < ubg.

In the current example we would probably prefer the constraint to read:

g * wy > ubg,

(c¢) K. Nyholm, 2007 page 120

SAA in Fixed Income Markets: A Matlab Based User’s Guide

which is the original constraint multiplied by —1. Hence, in the context of
how the frontier function requires constraints to be specified, the desired
constraint can be implemented in the following way:

g=[0 —1 =1 —1], and ubg = —0.25.

The example is shown below and compares the frontiers derived with and
without the above mentions constraints.
[1] r = [3.25; 5.75; 7.5; 12.3 1];

[2] ¢ = [25.0 24.5 33.0 37.5;

[3] 24.5 49.0 50.0 63.0;
[4] 33.0 50.0 121.0 66.0;
[5] 37.5 63.0 66.0 225.0 1;

[6] B = [zeros(4,1) ones(4,1)];

[71 G [0 -1 -1 -11;

[8] GB = [-0.25];

[9] N = 30;

[10] % --- Without constraints ---

[11] in.R = r; in.C = C; in.B = []; in.G = []; in.GB = []; in.N = N;

[12] [outl] = frontier(in);

[13] % --- With constraints ---

[14] in.R = r; in.C = C, in.B = B, in.G = G; in.GB = GB;, in.N = N;

[15] [out2] = frontier(in);

[16] % --- Plots ---

[17] figure

[18] plot(outl.RR(:,1),0outl.RR(:,2),’k-",’linewidth’,1), xlabel(’'Risk’), ylabel('EI[R]’)
[19] hold on

[20] plot(out2.RR(:,1),0ut2.RR(:,2),'k:’,’linewidth’,1), xlabel('Risk’), ylabel ('E[R]’)
[21] hold on

[22] plot(outl.mvp(1l,1),outl.mvp(1l,2),'ko’,’linewidth’,1), xlabel(’Risk’), ylabel('EI[R]’)

The following graph draws the comparison between the constrained and un-
constrained efficient frontiers.

(c¢) K. Nyholm, 2007 page 121

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Unconstrained frontier——— 9

Constrained frontier

E[R]

4 B g 10 12 14 16 13

Figure 6.4: Example of an unconstrained and constrained efficient frontiers

6.6 The Capital Asset Pricing Model

A corner stone in modern financial theory is the answer to how equilibrium
prices of financial contracts are determined in the economy. The Capital
Asset Pricing Model (CAPM) provides one answer. In terms of a verbal ar-
gument the CAPM says that if the agents in the economy are only concerned
with the two first moments of return distributions and have identical expec-
tations to these moments i.e. they agree on the risk and return characteristics
of the assets that trade in the economy, if they have similar investment hori-
zons, if they are risk averse and prefer more return to less, if a risk free asset
exists, and if agents in the economy can borrow and lend at the risk free rate,
then all agents will hold a portfolio of two assets: one asset is the risk free
interest rate, the other is the market portfolio. The agents will hold different
portions of these two assets: risk averse agents will hold much more of the
risk free asset and much less of the market portfolio than the less risk averse
agents. The market portfolio is defined on the basis of the market capitalisa-
tion weights of the individual assets that trade in the economy. The market
capitalisation weight for a given asset is defined as the ratio of the total value
of that asset to the total value of all assets, i.e. w; = V;/ S w Vi, where j

(c¢) K. Nyholm, 2007 page 122

SAA in Fixed Income Markets: A Matlab Based User’s Guide

refers to a specific asset and V' to value and K to the total number of assets
that trade in the economy. The value of an asset is equal to the number of
"pieces” of that asset that trade in the economy, e.g. the number of stocks a
given firm has issued or the number of bonds a given government has issued,
multiplied by its price. Since the price enters the calculation of the value,
and since agents in equilibrium all hold the market portfolio, albeit in dif-
ferent amounts to meet their risk aversion, the agent must have reached an
agreement on the prices of the underlying assets, and hence the market is in
equilibrium.
A graphical illustration of this is provided in Figure 6.5.

14k Capital Market Line—————— 5

E[R]

Frantier

Market portfalio

Figure 6.5: The Capital Market Line

The market portfolio is the tangent point between a straight line originating
at the risk free rate and the portfolio frontier. This line is called ”the capital
market line” (cml). Its slope is equal to the market price of risk i.e. the
compensation that agents require for bearing risk. In particular, the cml can
formally be expressed as:

—ry

T
Tj:Tf+

p— oj+ej (6.17)

(c¢) K. Nyholm, 2007 page 123

SAA in Fixed Income Markets: A Matlab Based User’s Guide

This is a linear relationship where o, and r;; are the standard deviation
and expected return of the market portfolio, respectively, r¢ is the risk free
rate and o; is the standard deviation of portfolio j. The term e; captures
expectation errors, i.e. e; = E[r;] — r;. Equation (6.17) in not the CAPM:
it is not an equilibrium relationship since it only expresses a relationship for
efficient portfolios, i.e. for the portfolios that fall on the cml. Recall that
Section 6.3 showed that the standard deviation / variance of a portfolio de-
creases when more assets are added to it, and that the portfolio risk tended
towards a certain constant in the limit defined by the average of the portfo-
lio’s covariance terms. The presence of a diversification effect suggests that
the portfolio standard deviation is not a perfect measure of portfolio risk.
Furthermore, since all investors in equilibrium hold only one risky portfolio,
it is tempting to hypothesis that a better risk measure should somehow be
related to this market portfolio. These ideas stem from the Capital Asset
Pricing Model (CAPM) that was developed independently by Sharpe, Lint-
ner and Mossin. It is intuitive to think about the CAPM as being a one
factor model, i.e. a model that has only one underlying risky component. In
the CAPM this risky component is the market portfolio. All other portfolios
and individual assets can then be described by their co-movement with the
single market factor. In particular, define this co-movement by:

5, - cov (15, 7ar) _ Uj’QM‘ (6.18)

var (rar) o3
Using this definition of risk the CAPM relation is written as:

ry=rp4Bx (ry —ry) +ej (6.19)

As it is the case for the cml in (6.17), the CAPM relationship in (6.19) is
a linear relationship between return and risk also called the security market
line (sml); however in (6.19) the risk is defined by 3; and not by o;. The
former () is often referred to as the systematic risk of individual assets and
portfolios, since this is the part of the risk that cannot be diversified away,
while the latter (o) is referred to the total risk of the portfolio/ the individual
security. The variance of (6.19) is:

— 2 2
o = By * oy + o, -
~—

total risk systematic risk unsystematic risk

(c¢) K. Nyholm, 2007 page 124

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Financial markets are not going to reward agents for bearing risks they don’t
need to bear. Since the unsystematic risk can be diversified away, agents are
not going to receive any compensation for having a portfolio that contains
this risk source. The CAPM relationship reflects this basic principle.

(c¢) K. Nyholm, 2007 page 125

Chapter 7

Statistical Tools

7.1 Introduction

This chapter presents some of the tools and techniques that can help mod-
elling and projecting returns. As such, these tools can aid the process of es-
timating expected returns for fixed income securities, equities and currencies
and help to model and forecast other variables of interest. The presentation
is applied in nature: this means that the more mathematical oriented readers
probably will be disappointed and feel compelled to complain about the lack
of rigor. It is the hope, however, that the presentation will serve as a help to
other readers, who may be interested in seeing actual implementation of the
mentioned tools.

Learning objectives

e Master basic time-series models

e Understand the usefulness of regime-switching techniques and their ap-
plications

e Obtain additional insights into how yield curves can be modelled in the
maturity and time-series dimensions

126

SAA in Fixed Income Markets: A Matlab Based User’s Guide

7.2 The Vector Auto Regression

The future evolution of most financial and economic time series depend on
their own past evolution and cross correlation with past observations of other
variables. Vector Autoregressive models exploit such dependency structures
by characterising the observation at time ¢ of a vector X as a function of
past observations {X; 1, X; o,...,X;_;}. The process for the mean of the
vector series can be described by:

p
X :c+ZXt_j * Aj + ey (7.1)
j=1
This is called a V AR(p) model where p refers to the number of lags included
in the model, and A; collects the autoregressive parameters at lag j. In the
formulation above, X, is a matrix of dimension (nObs — p) — by — nVars,
where nVars refers to the number of variables contained in X.

The optimal lag-length can be determined by the use of summary statis-
tics that are based on a specific weighting of the fit of the model against the
number of parameters that are necessary to obtain this particular fit. Hence,
these statistics gives a positive weight to the degree of fit obtained and in-
cludes a penalty for the number of variables needed to obtain the fit. In this
way a parsimonious model can be found, i.e. one that uses the fewest pos-
sible variables to get the best relative fit. Parsimonious models have proven
particularly useful for forecasting. Althought a model specification using
many parameters often provides a very good in-sample fit, it is seldom the
case that it also has the best best out-of-sample properties, i.e. produces the
best forecasts. Rather the contrary is true, and it is therefore often useful to
adherence to the principle of parsimony.

Two of such statistics are the Akaike’s and Schwarz Information Crite-
rions, labelled AIC and BIC, respectively. These can be calculated in the
following way':

AIC =1og (6°) + 2+ — o0 (7.2)
. ~2 log (T')
BIC =log (67) + k = b (7.3)

1See e.g. Mills (1999)[pp.34-35]

(c¢) K. Nyholm, 2007 page 127

SAA in Fixed Income Markets: A Matlab Based User’s Guide

It can be seen from (7.2) and (7.3) that the fit of the model is assessed by
the log of the sum of sample squared residuals, 5%, and then each criterion
adds a specific penalty for the number of parameters used to obtain this fit:
k represents the number of estimated parameters and nObs is the number of
time-series observations.

Related to (7.1) it is worth noting that any VAR(p) model can be writ-
ten as a VAR(1) model; this is also called to write the VAR(p) model in
companion form. Assume that we look at a VAR(3) model i.e.

Xt:C+Xt_1*A1+Xt_2*A2+Xt_3*A3+€t.

By defining
Xe=| Xi
X2
and
B A Ay As
A=\ T 0 0 |,
0O I O

where [is the identity matrix of appropriate dimension, the VAR(3) can be
written as a VAR(1):
)A{;t =c-+ AV *)?t_]_ + Ct. (74)

For completeness it should be mentioned that the univariate version of the
V AR(p) model is called an autoregressive model (of order p), which is written
as AR(p):

Ty =CH+ a1 *¥Tp_1+ A2 * Ty_9+ ...+ Qp* Ty_py + €.

7.2.1 Order of integration

A central concept in time series analysis is a classification of variables into
their order of integration. Basically, this classification refers to how many
times one needs to calculate first differences to make the time series sta-
tionary. Stationarity refers here to a visual picture where the time series

(c¢) K. Nyholm, 2007 page 128

SAA in Fixed Income Markets: A Matlab Based User’s Guide

observations looks to be randomly scattered around a constant mean value.?
It is naturally possible to test for whether a time series is stationary e.g.
using the Dickey-Fuller test statistic; and one can rely on economic theory
in judging whether a given time series is stationary or not.

The integration orders typically seen in finance and economics are of
orders 0 and 1, written as I(0) and I(1), respectively. One rarely encounters
time series of order 2 or higher. 1(0) refers to a stationary process and I(1) to
a process that is integrated of order 1. Hence, if Y; is (1), then the process
AY; =Y, — Y,y will be I(0). A standard example of an I(1) process is:

xt:k+a*xt_1+et,

with a = 1. This is the well-known random walk model. Stationarity in the
univariate case is defined by the value of a. When —1 < a < 1, the process
above is 1(0).

For a process involving more lags than one it is a bit more complicated
to determine whether a process is stationary or not. The requirements are
listed here, for detail see Hamilton (1994): For an AR(p) model it is required
that the roots of the following polynomia all lie outside the unit circle:

2

— _ _ _ p _
l—ay*xz—ag*xz coo—ap*x 2P =0.

Similarly, for the VAR(p) model it is required that the roots of the following
polynomia all lie outside the unit circle:
det [I—Al*z—AQ*ZQ—...—Ap*zp} =0,

where det indicates the determinant. Given that a process is stationary its
mean is calculated by:

c
EX] = +——
I— 25:1 Aj
for the VAR(p) model and by:
c
Elr] = ——=—
L- ?:1 a;

2The concept of trend stationarity refers to the situation where the time series ob-
servations looks to be randomly scattered around a constantly upwardly or downwardly
trending line.

(c¢) K. Nyholm, 2007 page 129

SAA in Fixed Income Markets: A Matlab Based User’s Guide

for the AR(p) model.

It can be shown that the VAR(p) model can be estimated efficiently by the
use of consecutive OLS regressions. Alternatively one can choose to maximise
the value of the multivariate log-likelihood function assuming that errors are
normally distributed. This amounts to calculating the approximative log
likelihood of the multivariate normal distribution function, as given by:

nObs — p 1 1 X 1..T
logL:T*log[det(Q)}—ﬁ*Zet*Q * € .
Jj=p+1

In terms of speed however, since closed-form expressions exist for the solution
to the OLS regression, this is typically faster to apply the OLS principle than
it is to optimise the log likelihood function.

7.3 Regime switching models

7.3.1 Introduction

The intuition behind regime-switching models is perhaps best illustrated via
a standard linear dummy-variable regression of the form:

Ty = c1dig + caday + cads s + €. (7.5)

Here x is the data thought to contain two or more states, where s indicates the
number of regimes, e.g. s = 3 means that three states are modelled, and the
¢’s represent constants that define the mean in each state. The d variables
represent dummy variables defining when a given state is effective. It is
further assumed that the error term is normally distributed, e ~ N (0, 0?).
To illustrate how data can look when the underlying data generating process
contains regime-switches Figure 7.1 shows 300 realisations of a simulation of
(7.5), where the process for d is chosen arbitrarily.

It is observed how the data is evolving around a fixed mean for some time, un-
til an abrupt change is observed after which data evolves around a new mean
for some time. These ”steps” observed in the data represent the regimes. In
Figure 7.1 we observe three regimes and my old eyes suggest that the means
of the regimes are roughly ¢; = 8, ¢c; = 4, and ¢3 = —2. Below we will fit
a regime-switching model to the data and find these mean estimated more
accurately.

(c¢) K. Nyholm, 2007 page 130

SAA in Fixed Income Markets: A Matlab Based User’s Guide

|
o attid
Dl l._,-l.l.'.
IO YA
.rr-.||.,l|||| f|:.|:

o E] 0 e F = 3

Figure 7.1: Example of regime-switching data

In a linear regression model as e.g. (7.5) usually the dummy variables are
fixed exogenously, however, a regime-switching model in the above guise of
equation (7.5), the d’s as well as the ¢’s are inferred simultaneously from the
data. In order to facilitate estimation of the model, where the d’s are going
to be treated as unobservable, a prediction-updating algorithm is applied to
construct the likelihood function.

To set up this algorithm a number of inputs need to be defined. These
are: starting values for the parameters to be estimated, which in our example
is: 0 = {c1, co,c3,0% P}, where a transition probability matrix P gives the
conditional probability of migrating within and between states. For example,
a model comprising three states P would be:

P11 D12 1 —p33 — pa3
P = P21 D22 D23) (7-6)
1—pi—pa 1—pa—Dpi2 P33

where the column number corresponds the state which is active at time ¢ and
the row to the state which is active at t + 1, for example, the second column
and third row entry (pa3) gives the probability that state 3 is followed by state
2. In general, the entries of P, i.e. p(;), indicate the transition probabilities
of going from state k, at time ¢, to state j, at time ¢ + 1. Consequently,
columns must sum to unity, since each column expresses the probability the
one state is followed by any other state. The diagonal of P expresses the

(c¢) K. Nyholm, 2007 page 131

SAA in Fixed Income Markets: A Matlab Based User’s Guide

probability that the process stays in the same state and can be taken as an
indication of the persistence of each state. Within the updating-prediction
algorithm used to estimate regime-switching models it is assumed that state
probabilities follow a markov chain with P as transition matrix.

State probabilities should be distinguished from the transition probabili-
ties. The matrix P contains transition probabilities, i.e. the probabilities of
migrating from one state to the next, when being in a given state at time ¢,
and is of dimension s — by — s. In contrast, the vector of state probabilities
gives the probability that the datapoint observed at time ¢ is generated by
either of the s regimes. These probabilities are collected in 7, which is of
dimension s — by — 1. For example, in the three state case, it could be that

0.20
ﬂ-t\t = 0.70 s
0.10

which would mean that there is 20% probability that the data point observed
at time t is generated by state 1, 70% probability that it is generated by
state 2 and 10% probability that it is generated by state 3. The slightly
peculiar subscript comes from the prediction-updating algorithm described
below. The matrix of values of the density for each observation, within each
state, is collected in D = f (x;|s; = j;0) for all observations ¢ and states j.
Here f(-) is taken to be the normal density, hence, again using the three
state case as an example,

1 —(ZEt—Cl)2
V2roy exp 207
_ 1 —(z1—cp)?
Dt o 2mog exp 20% . (77)
1 —(zs—c3)®
2mo3 exp 203

As can be seen from (7.7) it is possible that both the mean and the variance
of the data generating process varies over time. For the example data shown
in Figure 7.1 it seems only to be the case that the the mean varies between
regimes. However, in other applications regime-switches can just as well oc-
cur in the error term variances of the model. A regime dependent variance
could for example comply with the notion that financial markets in periods
of stress exhibit increased return volatility, compared to normal market cir-
cumstances. An appropriate model that could capture such behaviour would

(c¢) K. Nyholm, 2007 page 132

SAA in Fixed Income Markets: A Matlab Based User’s Guide

be a two state model where the variance of the data generating process varies
across states.

To estimate regime-switching models, Hamilton (see Hamilton (1994,
Chapter 22)) devise a method whereby one iterates over

Toje—1 © Dy
Tye = 5 , 7.8a
7Tt+1|t = P7Tt|t7 (78b)

for all £t = 1,2,...7T . The sign ® indicates element-by-element multiplica-
tion.

The intuition of expression (7.8a) for my; consists of two parts. First,
remember that 7, gives the state probabilities at a given point in time.
Intuitively, the better a data point observed at time t fit in either of the
densities, as evaluated by inserting the data point into (7.7), the higher should
this probability be. Second, given that we know the state probabilities at
time ¢ — 1 and the transition matrix, then we can generate a projection for
the state probabilities at time ¢ using only information available at time ¢ —1.
The numerator of (7.8a) represents the combination of these two sources of
information to draw inference about the which state that generates a given
data point, by taking the element-by-element product of the fit at time t,
as represented by the density observations collected in D;, and the forecast
of the state probability made for time ¢ using information available at time
t — 1. The numerator is therefore of dimension s — by — 1. The denominator
is the sum of the numerator-vector and can be seen to serve the purpose of
normalising 74; so that each entry in this vector falls on the interval {0,1},
and can thus be interpreted as probabilities.

It so happens, that the denominator also is identical to the likelihood
function value, conditional on 6.The estimation is then completed by opti-
mising,

log L () =) _log {Z -1 © Dt} . (7.9)

In practice it is not always easy to find the number of regime-switches that
are contained in data. Naturally, one needs to plot data before modelling
it, and this can be used as a first indication for the choice on the number

(c¢) K. Nyholm, 2007 page 133

SAA in Fixed Income Markets: A Matlab Based User’s Guide

of states to be included. Another, equally valid option, is to be guided by
economic theory. Statistical tests have been devised to help determining
the number of states present in data, however it is beyond the scope of the
current text to venture into a description of these.

An example of the estimation of a univariate regime-switching model
with three states is provided below using the data displayed in Figure 7.1.
The presented code example is general in the sense that it can handle the
estimation of univariate regime switching models with up to four states. The
following functions are needed:

1) The main function that sets up the problem and calls the Matlab(R)
optimisation module. This function is called regime.m?

2) The likelihood function is calculated by regime_likeli.m. This function
calls two other functions: regime_normaldensity and regime_pmat.

2a) regime-normaldensity simply implements the density function of the
normal distribution.

2b) regime_pmat sets up the transition matrix shown in (??) so that it
matches the desired number of states to be estimated.

The below represents the main function of the regime-switching function
called regime.m.
[1] function [out-] = regime(dat,m,ml,mu,maxiter)

[2]% Estimate Univariate Regime Switching Model on data (dat)

[31%

[4]% dat - data to be used in the estimation

[5]1% m - starting values for the mean

[6]1% number of states equal to nobs in m are estimated (max=4)
[7]% ml - lower bounds for estimated parameters

[8]% mu - upper bounds for estimated parameters

[9]% maxiter - maximum number of iterations

[10]%

[11]1% ...checking and setting up data

3Naturally, regime-switching models can be more elaborate than what this function can
hanlde. For example, autoregressive terms, regime-switching variances and time dependent
transition probabilities could be included.

(c¢) K. Nyholm, 2007 page 134

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]

[49]

oe

SAA in Fixed Income Markets: A Matlab Based User’s Guide

warning off all;

dat = dat(:,1); % ensuring that data is univariate

S = length(m(:)); % number of states

sig = std(dat) /5; % starting value for the standard dev
P_.diag = 0.95;

[T,junk] = size(dat);

P = ones(S,1) .*P_diag

parameter constraints on transition matrices

if (s==2)

A = [];

Al [1;

Au = [];

end
if (8==3)

A=[0000100100,
0000O0100O01O0,
0000001001]1];

Al =[0; 0; 01,

Au-=1[1; 1; 11,

end
if (S==4)

A=[00000100010001000;
00000010001 0O0O0OT1O0OQ0,;
00000001 00O0O1TO0O0O0CT1IO0,
000000001 0001TO0O00O01TI];

Al =1[0; 0; 0; 01,

Au-=1[1;, 1, 1, 11,

end
starting values and structure for ’'Prob’
S.param = [m; sig; PI;
if (s==3)
S_param = [m; sig; P; 0.02; 0.02; 0.02];
end
if (8==4)

S_param = [m; sig; P; 0.01; 0.01; 0.01; 0.01; 0.01; 0.01;

end

(c) K. Nyholm, 2007

0.

01,

0.01];

page 135

[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]
[62]
[63]
[64]
[65]
[66]
[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]
[77]
[78]
[79]
[80]
[81]

[82]

nparams =

ub (nparams- (S*2) +1:

ub (nparams- (S*3) +1:

out. =

SAA in Fixed Income Markets: A Matlab Based User’s Guide

length (S_param);

= -inf.*ones (nparams,1);
= inf.*ones (nparams,1);
1b(1:S8,1) = ml;

ub(1:8,1) = muy

(8==2)

1b (nparams-S+1:nparams, 1)

ub (nparams-S+1:nparams, 1)

(8==3)

1b (nparams- (S*2) +1:nparams,1l) =

(S==4)

1b (nparams- (S*3) +1:nparams,1l) =

structure for

Prob.user.dat = dat;
Prob.user.S = S

Prob.user.T = T

'Prob.user’

zeros (S,1);

ones (S,1);

zeros (S*2,1);

nparams,1l) = ones(S*2,1);

zeros (S*3,1);

nparams,l) = ones(S*3,1);

calling optimisation module

[Pr p-out];

options = optimset (’'Display’,’iter’,’'LargeScale’,’'off’,

'LevenbergMarquardt’, ’‘on’, ’'HessUpdate’,
'steepdesc’, ’MaxFunEvals’, maxiter, ’'TolFun’, le-8);
[param, fval, exitflag, outpt, la, g, H] = fmincon(’'regime_likeli’,
S_param,A,A-u, [], [1,1b,ub, [],options, Prob);
[1ik, Pr] = regime_likeli (param, Prob);
= Pr(2:length(Pr), :);
= sqgrt (diag(pinv(H)));
p-out = zeros(length(Pr),2);
p-out (1:length(param),:) = [param sel;

Line [1] specifies the name of the function to the ”"regime” and outlines

the input arguments necessary to run the function. These are, dat, con-
taining the data; m, the starting values for the mean parameters; ml, lower
bounds for the estimated parameters; mu, upper bounds for the parameter

(c¢) K. Nyholm, 2007

page 136

SAA in Fixed Income Markets: A Matlab Based User’s Guide

estimates; and, maxiter, setting an upper limit for the number of iterations
that Matlab(R) is allowed to use. maziter can be useful in an explorative
analysis where the number of states and starting values are difficult to set a
priori. In such cases this input parameter allows the user to limit calculation
time by setting a relative low iteration limit, e.g. maziter = 100. Line [12]
turns off warnings, so the user is not bothered with messages intended for
the program developer. Lines [13]-[18] fix necessary auxiliary variables and
set starting values for some of the parameters to be estimated. For example,
line [18] sets starting values for the transition matrix P (see, ??7) ensuring
that it has the right dimension as determined by the variable S that contains
the number of states to be estimates. S is allocated a value in line [14] on
the basis of the dimension of the input parameter m. Lines [19]-[41] impose
constraints so that the columns of P sum to unity, as they should. These
constraints are implemented by calculating one column entry, in each col-
umn, residually. This is implemented by the A matrix with corresponding
upper bounds as defined by A_u.* Such constraints can be included when
using Matlab(R)’s built in optimiser: fmincon. It is seen that the dimen-
sion of the A matrix together with the dimensions for the upper and lower
bounds are matched to the number of estimated states. This matching is
done through the series of if statements. Specifically, this constraint is of the
form:

A(n,n) * Z(n,1) < A—u(n,1)7

where x refers to the parameters to be estimated. In effect, A selects the pa-
rameters that are comprised by the constrains and sums them (because the
matrix only contains entries equal to either 0 or 1) and A_u gives their upper
limits. Lines [42]-[49] specify the starting values for the parameters of the
model, collected by the vectors names ”S_param”. The standard upper and
lower bounds for the parameters to be estimated are determined in lines [50]-
[66] also using an if-structure to accommodate the user specified number of
regimes. Data are allocated to the structured variable denoted by Prob.user
in lines [67]-[70]. Lines [72]-[74] define options for who the optimisations are
to be carried out, and lines [75]-[76] call Matlab(R)’s built in optimiser fmin-
con to conduct the maximisation of the likelihood function of the model. The
left-hand-side of the function call in line [75] specifies the output variables and

41t is noted that A_l is not used for anything. This constraint is not necessary because
of the general parameter lower limits defined by the parameter [b.

(c¢) K. Nyholm, 2007 page 137

SAA in Fixed Income Markets: A Matlab Based User’s Guide

the right-hand-side, starting with fmincon(/regime_likelis... tells Matlab(R)
which function to optimise, in this case it is the function called regime_likeli.
Line [77] makes an additional call to the function regime_likeli in order to
facilitate the calculation of the state probabilities, collected in the matrix Pr,
using the optimised values for the parameters. Alternatively, this matrix of
state probabilities could be added to the structured variable Prob.user at the
end of the regime_likeli function. The concluding lines of the regime func-
tion prepares the output and calculates standard errors for the parameter
estimates.

The function regime_likeli.m implements the formulas shown in the text
above to calculate the likelihood function of the regime switching model. In
particular, equations (7.7), (7.8a), (7.8b), and (7.9) are used.

[1] function [1lik, Pr] = regime_likeli (S_param, Prob)
[21%

[3]1% Likelihood function of the regime switching model
[4]1% with switches in the mean

[5]1% ... wunpacking data

[6] dat = Prob.user.dat;

[7] s = Prob.user.S;

[8] T = Prob.user.T,

[91% ...parameters

[10] mean- = S_param(1l:S,1);

[11] sig- = S_param(S+1,1);

[12] P- = regime.pmat (S, S-param);

[13] Pr = (1/8) .*ones (S, T); % Vector of state probabilities on each obs
[14] Cast_Pr = (1/8).*ones(S,T); % Vector of forecasts on Pr(i+l) on each obs
[15] smooth = Cast_Pr; % Vector of smoothed probabilities

[16] N = zeros(T,S); % Matrix of densities

[17] 1lik = zeros(T,1); % Vector of likelihood values

[18] for (j=1:8)

[19] N(:,j) = regime.normaldensity(mean-(j,1),sig-,dat);
[20] end

[21] N = N’;

[22] for (i=2:T+1)

[23] lik (i) = ones(1,S)*(Cast_Pr(:,i-1).*N(:,1i-1));
[24] Pr(:,i) = (Cast_Pr(:,i-1) .*N(:,1i-1))./lik(1);
[25] nan_-test = isnan(Pr),; $errortrap on the regime probabilities

(c¢) K. Nyholm, 2007 page 138

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[26] nan-test = sum(nan-test(:)); $%starting values are used if problems occur
[27] if (nan-test > 0):

[28] Pr(:,i) = (1/S).*ones(S,1);
[29] lik (i) = 2.7,

[30] end

[31] Cast.Pr(:,i) = P*Pr(:,i);
[32] for (c=1:5)

[33] if (Cast-Pr(c,i) == 0);
[34] Cast_Pr(c,i) = 0.001;
[35] end,

[36] if (Pr(c,i)>1);

[37] Pr(c,i) = 1;

[38] end,

[39] if (Pr(c,i) <0);

[40] Pr(c,i) = 0;

[41] end,

[42] c =c + 1;

[43] end,

[44] i = 1i+1;

[45] end;

[46] [row.lik,ol] = size(lik);

[47] 1ik = log(lik(2:row-1ik-1,1));
[48] 1ik = -1*sum(lik);
[49] Pr = Pr’;

Lines [2]-[17] prepare the input data and initiate the vectors and matrices
necessary for calculating the likelihood function. Lines [18]-[20] make suc-
cessive calls to the function calculating the normal density (this function is
shown below: regime_normaldensity). The loop variable j counts the num-
ber of user selected regimes to be estimated and the for loop in lines [18]-[20]
then calculates the normal density fit for the data given each of the means for
the regimes to be estimated i.e. it implements equation (7.7). Line [22] intro-
duced a for loop that ends in line [45]. This structure loops over the number
of observations contained in the data sample and implements equation (7.8a)
in line [24] and equation (7.8b) in line [31]. The likelihood function is calcu-
lated in line [23] and the log-likelihood values in lines [47]-[48]. The rest of
the code relates to error-checks that ensure that the code works even if has
poor starting values or in the case of numerical mishaps. For example, lines

(c¢) K. Nyholm, 2007 page 139

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[25]-[30] implements a safety valve against cases where the state probabilities
cannot be calculated. In such cases the state probabilities are set equal to
one divided by the number of states; Lines [32]-[45] takes care of abnormal
events where the probabilities are calculated to be either greater than one or
lower then zero. This naturally does not happen in normal applications of
the model, however, it is advisable to implement such error checks to ensure
that the code is resilient toward misguided input data and the like.

The function regime_normaldensity
[1] function [lik] = regime_normaldensity (mean.,sigma_,dat)

(2%

[3]1% normal density with meanl and variance sigmal”2

[4]% data is dat

(51%

[6] eps = dat - mean.

[7] lik = inv(sqgrt(2*pi*sigma-”2))*exp (- (eps .*eps)./(2*sigma."2));

The function regime_pmat implements equation (??) ensuring that the
dimension of the matrix corresponds to the number of states specified by the
user. It is noted that the function regime_pmat is called by regime_likeli in
line [12].

[1] function [Pmat] = regime_pmat (S, S_param)

(2%

[3]1% transition matrices depending on the number of states
[41%

[5] nparams = length(S_param(:));

[6] nobs_p = nparams-S+1:nparams,

(7]

(8] if (8==2)

[9] start. = nparams-S+1;

[10] pll = S_param(start_,1);
[11] p22 = S_param(start_+1,1);
[12] Pmat = [pll 1-p22;

[13] 1-pll p22 1;
[14] end

[15] if (8==3)

[16] start. = nparams- (S*2)+1,

(c¢) K. Nyholm, 2007 page 140

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[17] pll = S_param(start_,1);

[18] p22 = S_param(start_+1,1);

[19] p33 = S_param(start_+2,1);

[20] p21 = S.param(start-+3,1);

[21] pl2 = S_param(start_+4,1);

[22] p23 = S_param(start_+5,1);

[23] P.mat = [pll pl2 1-p23-p33 ;
[24] p21 p22 p23 ;

[25] 1-pll-p21 1-pl2-p22 p33];
[26] end

[27] 1f (S==4)

[28] start. = nparams- (S*3)+1,

[29] pll = S_param(start.,1);

[30] p22 = S_param(start_+1,1);

[31] p33 = S_param(start_+2,1);

[32] p44 = S_param(start_+3,1);

[33] p21l = S_param(start_+4,1);

[34] p32 = S_param(start_+5,1);

[35] pl2 = S_param(start-+6,1);

[36] p23 = S_param(start_+7,1);

[37] p34 = S_param(start_+8,1);

[38] p31l = S_param(start_+9,1);

[39] pl3 = S_param(start-+10,1);

[40] p24 = S_param(start-+11,1);

[41] Pmat = [pll pl2 pl3 1-p24-p34-p44 ;
[42] p2l p22 p23 p24 ;

[43] p31l p32 p33 p34 ;

[44] 1-pll-p21-p31 1-pl2-p22-p32 1-pl3-p23-p33 p44 1;
[45] end

We now invoke the main regime-switching function (regime.m) to fit a
three state model to the example data from Figure 7.1. This is done in
Matlab(R) command line mode, where it is required that the data vector X
lives in Matlab(R)’s workspace.

(c¢) K. Nyholm, 2007 page 141

SAA in Fixed Income Markets: A Matlab Based User’s Guide

The results are contained in the structure RS_out. The estimated parameters
are contained in RS_out.est and are shown below. The means of the regimes
and the variance of the error term are estimated to be

21 = 8.3269
& = 4.6129
G = —2.9086
G = 1.0214,

and, the transition matrix is estimated to be

R 0.9590 0.0275 0.0196
P = 0.0166 0.9589 0.0098 ,
0.0245 0.0136 0.9706

where numbers non-italics numbers represent the parameter estimates and
the numbers in italics are calculated as the residual, since the columns sum to
unity. In the plot below we super impose the estimated regime classifications
for state 1, contained in RS_out.pr(:,1), onto the plot of the data. This
allows us to visually inspect how well the regime-switching model classifies
data into the hypothesised regime one. Plots can naturally be generated for
the remaining two states to asses their relative fits. Such plots will show
that the model fit the other regimes equally well, as also indicated by the
parameter estimates.

Figure 7.2: Data and estimated probability for state 1

(c¢) K. Nyholm, 2007 page 142

SAA in Fixed Income Markets: A Matlab Based User’s Guide

7.4 Yield curve models in state-space form

This section introduces the state space form as a means to estimated time-
series models. To help intuition along on this topic the framework is in-
troduced by using the Nelson-Siegel model as an example. In addition, a
general framework is presented allowing for regime-switches in the evolution
of underlying factors, however, the framework naturally also apply to time
series that do not exhibit regime switching behaviour.® The key ingredients
to the state space model is the observation equation, the state equation and
the filtering algorithm. The observation equation is a description of the phe-
nomenon that is being investigated. In the case of the Nelson-Siegel model
this is the yield curve equation. The state equation is a description of how
the underlying factors evolve over time; these factors are taken to be unob-
served and will be estimated using the kalman filter, which constitutes the
third and last components to the framework.

The following represent the Nelson-Siegel model written in state-space
form. First the observation equation:

Yi(r) = Hx b+ e

and then the state equation:

Bt:k+F*ﬁt—1+vt7

which without loss of generality can be written as a VAR(1) model due to
(7.4). Below a more detailed description of this framework is given.

7.4.1 The Nelson-Siegel model in state-space

To illustrate the inner working of the state-space modelling framework, the
Kalman filter and the Hamilton regime-switching filter, the historical evo-
lution of observable yield curves in the cross-sectional as well as the times
series dimensions is modelled by the aid of the Nelson-Siegel model. The
Nelson-Siegel model is a parametric description of yield curves that capture
the cross-sectional dimension i.e. yields as a function of maturity. In the
time series dimension it is assumed that the evolution of the Nelson-Siegel
factors follow a regime-switching VAR(1) specification. The advantage of

5An excellent description of state space models with and without regime switches is
given in Kim and Nelson (2000).

(c¢) K. Nyholm, 2007 page 143

SAA in Fixed Income Markets: A Matlab Based User’s Guide

the suggested approach is that it, through the regime-switching component,
identifies generic shapes of the yield curve as they have materialised in the
past. In the context of strategic investment decisions, such generic curves fa-
cilitate easy generation of future yield evolutions, especially if the occurrence
of the yield curve regimes are linked to macro economic variables.

The model presented here is set in state space form and can be seen as
an expansion of the approach taken by Diebold and Li (2006). In particular,
we include the possibility of regime switches in the state equation accounting
for recurring structural breaks in the time-series dimension of the underlying
yield curve factors.

Adding regime switches

The parsimonious representation of yield curves as suggested by Nelson and
Siegel (1987) lends itself to an intuitive interpretation. It uses three factors
to describe the yield curve at a particular point in time, these being: the
level (), which is the yield at infinite maturity, the slope (/3,), which is
the difference between the long and the short end of the curve, and the
curvature (f3), which indicates how much the curve ’bends’ up or down, as
outlined in Section 5.2.1. To facilitate estimation of structural changes in the
yield curve factors the state equation allows for regime switches in the mean
parameters. The economic and practical motivations for this is summarised
by the following points:

e The yield is a function of the underlying economic environment. It is
therefore reasonable to believe that yield curves have different shapes
contingent on the prevalent economic environment. In particular, dur-
ing economic expansion the yield curve is generally very steep, whereas
it during inflationary periods tends to be flat or inverse. A justification
for these generic shapes can be found in the behaviour of the short end
of the curve suggested by the Taylor rule (see, Taylor (1993)), and the
fact that the long end of the curve is determined by market partici-
pant’s expectations to long-term inflation, economic growth and a risk
premium.

e Regime switches help identify generic yield curve shapes, that are nec-
essary for making long term yield curve projections.

(c¢) K. Nyholm, 2007 page 144

SAA in Fixed Income Markets: A Matlab Based User’s Guide

e A modelling framework as suggested here might be thought of as a
short hand way of obtaining a practical link between macro economic
scenarios and the yield curve shape and location without the burden
of finding the optimal set of variables to condition the yield curve esti-
mation on, i.e. it represents a reduced form model.

The observation equation

The vector of yields Y at time ¢ for different maturities 7 = {71, 79, -+ , 7}
can be expressed as a function of yield curve factors and yield curve factor
sensitivities.

Y (1) = HB, + &, (7.10)
where H collects the Nelson-Siegel factor sensitivities:

1 l—e=*1 1-e P11 AT
)\T&)\T&
1 l1—e” 772 l—e "2 e
_ AT2 AT2

AT AT _
o
n n

and 3 collects the yield curve factors i.e. the parameters to be estimated:

B4 yield curve level
Be=| By | = yield curve slope) (7.12)
Bs |, yield curve curvature |,

It is assumed that the residual volatility is e; ~ N(0, R).

The state equation

The state equation describes how the unobserved factors evolve over time.
Here it is assumed that a VAR(1) with regime switching in the means is
appropriate. Hence:

B1 m{ P11 P12 P13 B1
Bo | = | mf |+ | du ¢ ¢ By + U, (7.13)
B3 |, my P31 P32 P33 Bs],

(c¢) K. Nyholm, 2007 page 145

SAA in Fixed Income Markets: A Matlab Based User’s Guide

where v ~ N(0, Q). The superscript on the mean parameters indicate regime
affiliation. In our example of the model, however, only the slope is allowed
to exhibit regime switching behaviour i.e. I = {I}, J = {a,b,c}, K =
{K}. The reason for this is substantiated by theory and empirical studies
suggesting that of the three factors the slope is most strongly related to
economic activity. Also a pragmatic approach suggests that regime switches
are best suited for the slope parameter: using any kind of recent yield curve
data from US or Europe shows that the long term level has decreased steadily
over time. In fact visual inspection of a time series of 10 year yields will not
reveal any apparent structural breaks but rather an evolvement close to a
random walk with a negative trend. The curvature explains relatively little of
the variation of yields over time (approximately around 5%), so even though
there might be regime switches in the curvature factor it is questionable how
much value they would add if modelled.

Estimation procedure

This section shows how the model presented above can be estimated. As
stated, it is assumed that only one underlying factor exhibits regime-switching
behaviour and that the mean captures this switching behaviour. The likeli-
hood estimation of the model is based on a combination of the kalman filter
and Hamilton regime-switching algorithms, as illustrated by Kim and Nel-
son (2000); for a detailed presentation of the Kalman filter see e.g. Hamilton
(1994, ch.13) and for a good presentation of regime-switching models see e.g.
Hamilton (1994, ch.22).
With regime-switches the state equation takes the following form

ﬁiu—l =m’ + EBi 11+ e, (7.14)

where j = (1,2,...,S) indicates regimes, m is the mean, F' is the matrix
of autoregressive parameters, and (3, ;,_; is a probability weighted average
of the betas from the previous kalman filter iteration. The observations
equation translates the unobserved factors from (7.14) into yields:

Y = HB + v, (7.15)

Y, is the vector of yields observed at time ¢ for the desired n maturities
and H is a matrix comprising the Nelson-Siegel factors, as defined in (7.11).

(c¢) K. Nyholm, 2007 page 146

SAA in Fixed Income Markets: A Matlab Based User’s Guide

The prediction errors n of the kalman filter will be regime-dependent as a
consequence of the regime dependence of 3;, ; as illustrated in (7.14),

My =Ye— HBj) . (7.16)

It is assumed that the possible j regimes affect only the mean-specification
of 3, so variance terms are implicitly assumed to be unaffected by changes
in regime. For this reason the conditional prediction variance in the kalman
filter is expressed as,

foe—r = E [},1] = HPy_ H' + R (7.17)

where P;;_; is the one-step ahead predictor for the conditional covariance of
B, which is

Pt|t—1 = FPt—1|t—1F, + Q (718)
The density at time t for each of the j regimes can then be calculated by

j —0.5 1 _ -
H(0) o< | fyeea| " exp {—§n§|t_1ftt1_1ni|t_l} : (7.19)

To complete the kalman filter, 5 as well as its variance need to be updated.
While the updating of the variance proceeds according to the regular Kalman
Filter since the regime classification does not appear in (7.18), updating
[has to take into account the regime-switching as given in (7.14). As in
Kim&Nelson the updated [is calculated as a weighted average of the pre-
dicted 3, using as weights the state probabilities from the regime switching
filter. These probabilities 7w are calculated as:

Tje—1 © Dy
U (my—1 © Dy)’

where ® is the element-by-element multiplicator, D collects the densities
in a row vector, and 1 is a vector of ones of dimension j. According to
the Hamilton filter these probabilities are predicted one-step ahead in the
following way:

(7.20)

Tt =

Ti+1lt = PTtjt—1, (7.21)

(c¢) K. Nyholm, 2007 page 147

SAA in Fixed Income Markets: A Matlab Based User’s Guide

with p being the transition probability matrix. The Kalman Filter iteration
can then be completed by updating P in the regular way and g through a
weighted average of the updated values.

Pyt = Pye1 — Popr H' fye 1 H Py (7.22)
{|t = 6?#—1 + ‘Pt\t—lH/ft‘_tl_lni“_l (723)
By = T B, (7.24)

where B collects ﬁin for j = (1,2,...,5) and 3, thus can be seen as a
weighted average of the individual regime betas.

The log likelihood function to be maximised is actually the log of the
denominator of (7.20), i.e. the log of the weighted sum of the densities for

each of the regimes:

T
LogL (0) = log [1'(my;-1 @ Dy)] ,
t=1

where 1 is a vector of ones (just used to sum the state densities), D, collects
the densities for each state j at time ¢, my;_; is a j by 1 vector holding the
estimated state probabilities at time ¢ given information as of time ¢t — 1, and
© is the element-by-element multiplicator.

As illustrated above the maximum likelihood estimation problem is solved
by combining the kalman filter and the Hamilton filter. By iterating through
data the likelihood of each factor being drawn from the j different possibilities
defined by the state is evaluated. This is accomplished by expanding the
”dimension” of 3 in the kalman filter to fit the number of states modelled,
and at the end of each iteration by collapsing the ”dimension” to one through
a weighted average, where the weights are the regime probabilities that are
derived by the Hamilton filter.

Estimation example

The yield curve modelling framework described above is implemented in Mat-
lab via the following functions. The data needed to estimate the model is col-
lected in an Excel(tm) sheet called yld2beta.zls. Since there is a fair amount

(c¢) K. Nyholm, 2007 page 148

SAA in Fixed Income Markets: A Matlab Based User’s Guide

of data needed to run the tool, it is more convenient to collect the data in Ex-
cel and then send it to Matlab using the Matlab(R) Excel add-in. The three
necessary Matlab(R) files are contained on the cd accompanying the book
and they are called yld2beta_shell.m, yld2beta.m, and yld2beta_likeli.m. The
first of these files is organising data into a structured variable after which it
calls the main calculation program (yld2beta.m). The likelihood function
is programmed in the file labelled yld2beta_likeli.m, which is invoked from
yld2beta.m.

Since the Matlab(R) implementation of the model follows very closely the
formulas given above it seems more fruitful to leave it to the reader to go
through the files. Instead, we will show some of the results that are generated
when running the yld2beta_shell program.

Figure 7.3: State probabilities and the slope factor

As can be seen in Figure 7.3 three distinct regimes are identified. The prob-
ability for each state is shown as a shaded area in the figure and the slope
factor is plottet to serve as a point of comparison. Regime 1 is identified by
slope observations having a positive slope of 1.87, i.e. 187 basis points. It is
recalled that the slope factor in the Nelson-Siegel model is defined as minus
the "traditionally” used slope convention, so a negative slope in the Nelson-
Siegel yield curve models corresponds to an upward sloping yield curve. The
second regime comprises steeply upward sloping yield curves as identified by
a mean slope factor of 392 basis points. The last regime 3 comprises yield
curves that are close to being flat, and some are even inverse, generated by

(c¢) K. Nyholm, 2007 page 149

SAA in Fixed Income Markets: A Matlab Based User’s Guide

a mean slope of roughly 49 basis points. It is further noted from the Figure
that the regimes are clearly identified by probabilities close to unity when
the regime is active and zero when the regime is inactive.

7.5 Importance Sampling

Books and journal articles have been written about how to perform Monte
Carlo studies in the most clever ways possible.® This flourishing literature
should probably be seen against the prolifiration of complex options and the
need to quickly and precisely price such instruments. A key concept in the
design of clever Monte Carlo studies is how to reduce the variance of the esti-
mator and there are different ways of doing this, e.g. via antithetic sampling,
control variates, stratified sampling and so forth.” It is well beyond the scope
of this chapter to treat all these different techniques and therefore we choose
to focus on one technique that is of particular relevance to the estimation of
risk measures, namely importance sampling. As it is demonstrated below, in
an asset allocation context, importance sampling is particularly relevant for
the calculation of tail risk measures and statistics based on rare events.

7.5.1 Some theory

The basic idea of importance sampling is to focus ones attention on the parts
of the distribution of the variable, that is of greater interest for the task at
hand. For example, if we want to estimate the expected shortfall of a bond
portfolio by the use of simulation techniques, a more precise estimate will be
obtained if we can generate more realisations in the loss tail of the distribution
than would occur under normal circumstances e.g. 1% of the time if we
look at the expected shortfall at a 99% level of significance. So, we need
a technique that generates and over-representation of tail outcomes and at
the same time tells us how to adjust the resulting simulation based estimate
for this generated degree of tail over-representation. One such answer is
provided by the importance sampling technique; Glasserman (2004, p. 255
and Appendix B.4) reviews the theoretical underpinnings of the methodology.

Let h (z) represent a functional transformation of the variable x that is
needed for calculating the metric that we are interested in. For example, if in-

6For good books in this arena see for example Glasserman (2004) and Jackel (2002).
In this context the term ”clever” is used as an antonym to ”brute force” calculations.

(c¢) K. Nyholm, 2007 page 150

SAA in Fixed Income Markets: A Matlab Based User’s Guide

terest is on estimating the expected shortfall then h (z) = z* I <yar, , * 1Tla,

with the expected shortfall being calculated by: Opg = = Zthl h(x).
Here x represents the simulated variable, T' is the sample size, a is the confi-
dence level, and VaR;_, is the Value-at-Risk level for x, and I is an indicator
function taking on the value 1 if z; is in the tail and 0 otherwise. To simulate
the T realisations of the variable x, an application of the traditional (brute
force) Monte Carlo technique stipulates that random draws are generated
from a probability density function f. If innovations, e;, to the process gov-
erning x are normally distributed with variance o2, we would draw random
numbers from N (0,0?%) and feed them trough the appropriate calculation
expression to generate realisations for z. In this case f () is the probability
density function of the normal distribution.

Rather than using the density f to generate realisations for x, the impor-
tance sampling technique suggests to use a density g. The g density should
be different from f in a way to ensures that more realisations of x take
on interesting values e.g. that more realisations of x fall in the loss-tail, if
we want to estimate expected shortfall.® Furthermore, the ratio of the two
densities f and ¢ is used to adjust the calculated summary statistic for the
over-reprasentation of ”interesting” observations generated by g. In effect,
the importance sampling estimate is calculated by:

g9 ()

Sometimes ¢ is referred to as the ”shifted” density and the ration f/g is called
the density ratio (or the Radon-Nikodym derivative or the measure change).
In equation (7.25) the term h (z;) accounts for the function evaluation of
the shifted x variable i.e. the values for x based on the simulation using
the shifted g density. The numerator f (z;) represents the evaluation of x
under the original density, and ¢ (z;) represents the evaluation of = under
the shifted density.

Sl f (@)
0= ; h(z;) : (7.25)

7.5.2 An example

To illustrate how importance sampling can be implemented consider the Mat-
lab(R) script below. It calculates the expected shortfall for a bond portfolio

8The choice of g has to satisfy that f (z) > 0 = g (x) > 0, see Glasserman (2004, p.
255)

(c¢) K. Nyholm, 2007 page 151

SAA in Fixed Income Markets: A Matlab Based User’s Guide

and illustrates that using the importance sampling technique can reduce the
variability of the parameter estimate.

[1] nObs = 250;

[2] nIter = 500;

[3] a

0.99;

[4] £ = zeros(nObs,1);

[5] g = zeros(nObs,1); %
c

[6] = [18.6 15.6 17.9 15.8 11.3;

[7] 15.6 21.4 19.6 19.9 10.9;
[8] 17.9 19.6 36.3 28.2 15.8;
[9] 15.8 19.9 28.2 35.8 16.1;
[10 11.3 10.9 15.8 16.1 38.6 1;

[11] w = [0.51; 0.29; 0.00; 0.02; 0.18 1;
[12] ishift = -10;

[13] %

[14] % Calc theoretical VaR

[15] %

[16] VaR-base = -norminv(a)*sqgrt (w’ *C*w);
[17] ES-base = exp (- (norminv(a)"2)/2)/((1l-a)* (2*pi)~0.5)*sqgrt (w’ *C*w);
[18] ES.S = zeros(nlter,2);

[19] %

[20] % simulating portfolio returns

[21] %

[22] for (j=1l:nIter)

[23] disp(sprintf (' Percentage completed %3£f’, 100*j/nIter))

[24] epsl = randn (nObs, length(C)) *chol (C);

[25] rp = epslt*w;

[26] rp-IS = (epsl+iShift) *w;

[27] for (k=1:nObs)

[28] f(k,1) = exp(-0.5*% (rp-IS(k,1) 2/ (w'*C*w)));

[29] g(k,1) = exp(-0.5* (((rp-IS(k,1)+iShift)-mean (rp-IS(:,1)+iShift))"2/(w’*C*w)
));

[30] end

[31] ES.S(j,1) = -mean([rp<<=VaR.base].*rp) * 1/(1-a);

[32] ESS(j,2) = -mean([rp-IS<=VaR.base].*rp.IS .* (f./g)) * 1/(1-a);
[33] end

[34] disp(’Means’)

(c¢) K. Nyholm, 2007 page 152

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[35] mean (ES.S)

[36] disp(’Variances’)

[37] var (ES-S)

[38] disp(’Theoretically calculated expected shortfall’)
[39] ES_base

[40] figure

[41] subplot(1,2,1), plot(ES.S(:,1),'k-"), title(’Standard Estimate’),

[42] axis ([0 nIter 0 max(ES.S(:,1))])

[43] subplot(1l,2,2), plot(ES.S(:,2),’k-"), title(’Importance Samp. Est.’),
[44] axis ([0 nIter 0 max(ES_S(:,1))])

Running the above script gives the following results: Figure 7.4 draws a
comparison between the estimate of expected shortfall using ”brute force”
(the left graph) and using importance sampling (the right graph) for each of
the 500 iterations specified in line [2]. The y-axis scales in the two plots are
identical and the variance reduction obtained by using importance sampling
is thus striking.

Standard Estimate Importance Sampling Estimate

b ' i ! i p st B
30 B A]
% Bl i
20 20+ 4

10
3
o

U Wih

o 200 40

!

Figure 7.4: Estimates of Expected Shortfall

0 L L L L
500] 100 200 300 400 500

The estimated mean of the expected shortfall estimations are both identical

(c¢) K. Nyholm, 2007 page 153

SAA in Fixed Income Markets: A Matlab Based User’s Guide

to the therotical value of 10.8, however the variance of the ”brute force” cal-
culation is 46.6 compared to a variance of 1.2 for the importance sampling
technique. Hence, the latter can facilitate a variance reduction of approx-
imately a factor 50 using the example data above. And, this reduction is
obtained without optimising the shifted distribution. In the end-chapter ex-
ercises the reader is invited to find the optimal shift factor for the concrete
example presented in the Matlab(R) script file.

Turning now to the example script file. Lines [1]-[12] allocate starting
values to variables. Line [1] specifies the number of observations to be gener-
ated for each simulated portfolio return distribution, and line [2] specifies the
number of times a portfolio return distribution is simulated. In Figure 7.4 the
x-axis is defined from 1 to nlter = 500, i.e. covering the number of times the
estimation experiment is repeated, and each observation in the graphs (one
in each panel) is the resulting expected shortfall calculated on the basis of
nObs = 250 simulated portfolio returns. Line [3] sets the confidence interval,
which is this case is the 99% level. Line [4] and [5] prepare vectors to contain
the density values, f for the unshifted and g for the shifted density. Lines
[6]-[10] defines the covariance matrix, line [11] the portfolio weights, and line
[12] the size of the mean shift for density g. Line [12] sets iShift = —10,
which is close to the 99% Value-at-Risk using the covariance matrix C'. This
seems to be a qualified guess for the size of the shift, since the VaR marks
the begining of the tail relevant for the expected shortfall calculations. Lines
[13]-[18] calculate the VaR and the theoretical expected shortfall value using
(4.1) and (4.2). Effectively, VaR_base contains the 99% Value-at-Risk and
ES_base contains the 99% expected shortfall assuming that the underlying
data is normally distributed. Line [18] prepares the vector, E£S_S, as a con-
tainer for the calculated expected shortfalls. Lines [19]-[34] are responsible
for the main calculations performed by the script. An outer loop over the
variable nlter is spanned by lines [22]-[33]. The calculation inside this loop
thus constitutes one single calculation of the expected shortfall on the basis of
a "brute force” Monte Carlo method and the importance sampling technique.
Using simulated data the results are stores in the vector called ES_S; the cal-
culation and storing takes place in lines [31] and [32]. Line [31] is the "brute
force” calculation applying the function average (ry I, <var,_,) * 7= Line
[32] performs a similar calculation using however the shifted density. There-
fore the estimate is corrected by the density ration f/g as described above.
Lines [28]-[31] calculate the unshifted and shifted densities on the basis of
the normal distribution. As an information to the user, line [23] prints to

(c¢) K. Nyholm, 2007 page 154

SAA in Fixed Income Markets: A Matlab Based User’s Guide

screen the percantage completed simulations. Line [24] generates correlated
random numbers using the Cholesky decomposition, as we have seen be-
fore, and lines [25]-[26] calculate the unshifted and shifted portfolio returns,
respectively. The remaining lines [34]-[42] reports the results.

(c¢) K. Nyholm, 2007 page 155

Chapter 8

Building graphical user
interfaces

8.1 Introduction

This chapter gives a general introduction on how to construct Graphical User
Interfaces (GUIs) in Matlat. Many possibilities and features are available to
this end, and the current chapter only scratches the surface. Following the
general spirit and intention of this book, the current chapter will illustrate
the GUI capabilities of Matlab via an example. In particular, we will build a
front-end that allows the user to explore the Nelson and Siegel (1987) model
as reparameterized by Diebold and Li (2006).

Learning objectives

To be able to use the Matlab(R) development environment for Graph-
ical User Interfaces (GUI)

Learn the central elements of a Matlab(R) GUI building feature (guide)

How to generate input and output from a GUI

How to pass variables between GUI functions

156

SAA in Fixed Income Markets: A Matlab Based User’s Guide

8.2 The ”guide” development environment

The most straight-forward way to build a GUI, and the method we will
use, is to initiate the Matlab(R) "guide”. This is a user-friendly graphical
environment that will make the most vital elements of GUI building available
to us at the click of a button. To start the guide, simple type

at the command prompt. This will bring up the following screen:

Gue Quickstart |

Create New GUI | open Existing GUI |

GUIDE templates - Preview

«J Blank GUI (Defaulf)

4\ GUIwith Uicontrols

4\ GUIwith Axes and Menu
<\ Modal Question Dialog

BLANK

[~ Save on startup as; [c\program filesimatiabr2008b\bintwin32wntitlied fig Browse

| 0K | Cancel I Help

Figure 8.1: The Matlab GUIDE start screen

Clicking ”OK?” to the choice activated by default in the start screen will open

the development environment in which we will develop out ”Nelson-Siegel
Example” GUI

To the left in the GUI development area (see 8.2) are the varios controls /
callbacks that we can add to the GUI. For the example GUI that we are
going to build the following are needed:

e a "Push Button” allows us to execute a command when the button is
activated;

(c¢) K. Nyholm, 2007 page 157

SAA in Fixed Income Markets: A Matlab Based User’s Guide

~laix]
[FCRECES: Yol beyors s ous:i How

DFH| & 0Eo e aEEH eS|~

[x

® |4

el | iy

=11

|

il

=2

Figure 8.2: The GUI development area

e an "Edit Text” box can be used to take a single input from the user;

e the ”Static Text” box gives us the possibility to write headings and
messages to the user;

e the ”Axes” box lets us print a figure in the GUI. Alternatively, a figure
can be created outside the GUI,

e the "uitable” feature is not shown on the GUI development area. It
allows for easy input and output to the GUI.

An additional comment is warranted on the last bullet-point mentioned
above. The ”uitable” is an extremely useful feature for data transport to
and from the GUI. Based on rows and columns dimensions specified by the
user, it installs an Excel(tm) like grid on the GUI. This is far to be pre-
ferred over for example an ”Excel sheet” ActiveX component, because such
a component will only work if a compatible version of Excel is installed on
the machine where the GUI is executed. Therefore, the "uitable” is more
general and will give rise to less problems if the GUI, as it is often the case,
is intented for use on many different PCs. Unfortunately, ”uitable” seems not

(c¢) K. Nyholm, 2007 page 158

SAA in Fixed Income Markets: A Matlab Based User’s Guide

to be supported by Matlab(R): there is no help function directly available!.
Nontheless, we will still make use of the ”uitable” in this chapter.

Another general issue to mention is how to use the ” Property Inspector”,
which is activated by double-clicking on the ”controls”, and which allows the
GUI designer to change general features of that particular contral. We can
illustrate the ” Property Inspector” by way of example by changing the name
of our GUI. Currently in is called "untitled.fig” (see the upper left corner of
8.2). Lets change this to something that says more about the purpose of the
GUI, for example ”"Nelson-Siegel Example”. To do this we go through the
following steps:

e double-click on the GUI area i.e. the grey area in 8.2;

e this brings up the following pop-up window;

e scroll down to the "Name” property and change it to ”Nelson-Siegel
Example”;

e close the ”Property Inspector” as normally in windows(tm) by clicking
the ”x” in the upper left hand hand corner;

e save the GUI by clicking on the "save button” on the GUI design
area. This will save figure file and bring up a Matlab(R) m-file that
holds the code of the GUI. This file, called ” NelsonSiegelExample.m”
contains some autogenerated code that we will, and should in general,
not touch. However, below the auto-genearted code, we can add the
code that eventually will form the functionalities of our GUI.

8.3 Creating a simple GUI

We are now ready to populate the GUI with the controls that we need. For
each control we add to the GUI, Matlab(R) automatically generates the ap-
propriate "header code” to the ”NelsonSiegelExample.m” file, i.e. Matlab(R)

'Writing "help uitable” in the Matlab(R) command prompt gives the following message:
?»WARNING: This feature is not supported in MATLAB and the API and functionality
may change in a future release”. The help text for the "uitable” can be found by writing
7edit uitable”, i.e. by opening the source code for the ”uitable” in the Matlab(R) editor.
Beware of not changing the code when doing this!

(c¢) K. Nyholm, 2007 page 159

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Ex Property Inspector

= figure (Unutded)

jES

BackingStore
BeingDelated
BusyAction
ButtonlDownFon
Clipping
CloseRequestFon
Color

CreateFon
CurrentCharacter

1 CurrentPoint

DeleteFcn
DockControl=
DoubleBuffer
FileManmes
FixedColors
Handlevisibility
HitTest
IntegerHandle
Interruptible
InvertHardcopy
KeyPressFon
ManuBar
MNanme

Pk P2l

on

qQueus

(=121
closereq

| =

o
[-0.2z -0.077])

orn

on

[0.0; 1.0; 0.8313725490196053; 0.0;

callback
on
of f
on
on

none
Untitled
e

S S

L)

LCRRTAY

SRR E R

Figure 8.3:

will add the necessary function statements that we can then afterwards mod-
ify to give e.g. a "Push Button” its desired features. For the purpose of the
GUI we need the following controls:

e three "Push Buttons”;

e two ”"Axes” plotting areas;

seven ”Edit Text” boxes” and nine ”Static Text” boxes;

two "uitables” (not seen in the GUI menu);

two ”Button Groups” and four ”Radio Buttons”;

e and, three "panels” to keep the functionalities of the GUI separate.

All these controls can be added to the GUI design area by dragging-
and-dropping them from the left hand side menu, apart from the ”uitable”,
which we will add manually at a later stage. In a first step, lets add the
necessary controls to the GUI design area, re-name and re-size them. For
the "Push Button” the text displayed on the button it-self can be changed

(c¢) K. Nyholm, 2007 page 160

SAA in Fixed Income Markets: A Matlab Based User’s Guide

in the ”"Property Inspector” under ”String”. It is also be a good idea to
change the "Tag” of the ”"Push Button”. The tag is the name that the
button is given in the function that Matlab(R) automatically adds to the
”NelsonSiegelExample.m” when a button is added to the GUI. Changing the
tag makes it easier to identify the push buttons and the other controls once
we start adding functionalities to GUI. The name and tag change is shown
in 8.4 for the first push button we add to the GUI.

Lol R — e
(& ucontrl (plot_crve "Flot CLrve') Be [Tet Go 0 Tk Doy (ke e 156 sk
— T T | Owlingcc|@hesrjpRRar0aE 1 O
ports o T o e
| o ([bandien cutpur - pmsect: i
57
S m i ;
o . 89 = guidsta(hobject, basdles):
i : =
(4]]
carter CHl |
= v e
“
i 1
L0 £l i@
10 2 l=
“
00 2 |lls
[238.385 28 2.844] il
P 71
T
S T | -
E Potcure ™
e - 75
G e
gt _purve 2 Hin
R o [
79
change here = s
dharacters 81
) (00 coute] = | _[J
El) [00] [btmrtrkn + BGs 1
” e T

Figure 8.4: Changing the Name and Tag properties of a "Push Button”

Once all controls are added to the GUI it should look like 8.5.

The next step is to add functionalities to the GUI. This is done by adding
code to the ”NelsonSiegelExample.m”. By now, Matlab(R) has already
added functions calls for each of the controls we have added to the GUI
to this file. Our job is to add the specific lines of code to this pre-generated
structure as to ensure that the GUI indeed does the job we want it to do.
One important feature we need in this connection is to be able to pass data
and variable values between the functions calls of the GUI. We can do this
by using the following commands in the GUI code:

[3] handles.varl = 1;

(c¢) K. Nyholm, 2007 page 161

SAA in Fixed Income Markets: A Matlab Based User’s Guide

o helsonsicoeibiamle fig =lolx|
Ble Edt Yew Lavost Took b
DEd| Tl o &MHE e »

Figure 8.5: Nelson-Siegel GUI

[k] guidata (hObject,handles);
[y] handles = guidata (hObject);
[z] temp = handles.varl,

Line 141 creates a new variable in the structured variable called "handles”.
The new variable called ”varl” is given the value 1. Line (k1 stores the
variable "handles” in the guidata register under the object called "hObject”.
The variables storred in "handles” can then be recalled and operations can
be performed on them in other functions in the GUI by using line ty1 to recall
the "handles” structure and by allocating the values storred in the handles
structure, as e.g. shown in line (z1. This process will be illustrated in detail
when generating the code for our example GUI.

8.3.1 Plotting the yield curve

Our Nelson-Siegel GUI is devided into two main areas. In this section we
will describe how to get the first of these, labelled ” Nelson-Siegel Yield Curve
Plotting” up-and-running. The purpose of this part of the GUI is to allow
the user to plot Nelson-Siegel yield curves. For illustrative purposes the GUI

(c¢) K. Nyholm, 2007 page 162

SAA in Fixed Income Markets: A Matlab Based User’s Guide

also plots the factor loading matrix implied by the Nelson-Siegel model, in
particular by the choice of the A\ parameter. Based on the inputs: level,
slope, curvature and A, the GUI plots the the factor loading structure in the
first graphing area and the Nelson-Siegel yield curve in the second graphing
area and. In other words, following equation (7.10), the first plotting area
displays Y; (1) on the basis of the input supplied by 5, and A, from equation
(7.11); the second plotting area displays H from (7.11).

First we need to store the input values entered in the four edit boxes for
Lambda, Level, Slope, and curvature. The autogenerated code by Matlab(R)
for the edit box callback consists of two parts as illustrated below.

[1] function editl_Callback (hObject, eventdata, handles)

[2] % hObject handle to editl (see GCBO)

[3] % eventdata reserved - to be defined in a future version of MATLAB
[4] % handles structure with handles and user data (see GUIDATA)

5]

[6] % Hints: get(hObject,’String’) returns contents of editl as text

[7] % str2double(get (hObject,’String’)) returns contents of editl as a double

[9] % --- Executes during object creation, after setting all properties.
[10] function editl_CreateFcn (hObject, eventdata, handles)

[11] % hObject handle to editl (see GCBO)

[12] % eventdata reserved - to be defined in a future version of MATLAB

[13] % handles empty - handles not created until after all CreateFcns called

[15] % Hint: edit controls usually have a white background on Windows.

[16] % See ISPC and COMPUTER.

[17] if ispc && isequal (get (hObject, 'BackgroundColor’), get (0, ’defaultUicontrolBackgroundColor’)
[18] set (hObject, 'BackgroundColor’, 'white’);

[19] end

Line [1] contains the auto-generated function call for the first edit-box. Lines
[2]-[7] contain information text that is not executed when the code is run
because all lines are preceded by a %-sign that by Matlab(R) is interpreted
as a text comment. Lines [8]-[12] are left blank to indicate that these lines
(and more if needed) are used to enter the functionalities of the edit-box.
Lines [13]-[23] also contain auto-generated code relating to the edit-box. We
will not comment on or edit in this part of the code.

(c¢) K. Nyholm, 2007 page 163

SAA in Fixed Income Markets: A Matlab Based User’s Guide

The purpose of the input box called ”edit1” is to take user input for the
value of \ and to store it in the guidata set. How to do this is shown below.
[1] function editl_Callback (hObject, eventdata, handles)

[2] handles.Lambda = str2double (get (hObject,’String’));
[3] guidata (hObject,handles)

Again, line [1] is the function call. As seen above, line [2] generates a new
variable, in this case called ” Lambda”, and adds this variable to the structure
"handles”. The value keyed into to the editbox is transferred to the variable
through the get (hobject, 'string’) command. The keyword ”string” indicates
that the datatype of the input box is text. To convert the text into a number
we use the str2dounie command. Similar lines of code are to be repeated for
each of the input box call-back functions, whereby the variables: ”Level”,
”Slope”, and ”Curvature” are generated and added to the "handles” data
structure.

After the input variables have been collected and their values added to
the data structure we can complete the first part of the GUI that prints
Nelson-Siegel curves. The code below shows how.

[1] function plot_curve_Callback (hObject, eventdata, handles)

[2] % ... Organising data

[3] handles = guidata (hObject);

[4] Lambda = handles.Lambda;

[5] Level = handles.Level;

[6] Slope = handles.Slope;

[7] Curvature = handles.Curvature;

[8] % ... Constructing NS curve and sensitivities

[9] nTau = 120;

[10] tau = [1:1:nTaul’;
[11] H = [ones(nTau,l) (l-exp(-Lambda.*tau))./(Lambda.*tau)
[12] (1-exp (-Lambda.*tau)) ./ (Lambda. *tau) -exp (-Lambda. *tau)];

[13] Y = H*[Level, Slope; Curvature];

[14] % ... Plotting results

[15] axes (handles.axesl_-loading.structure); % Plot for H matrix
[16] plot (H);

[17] axis([1 120 0 1.2]);

[18] set(gca, 'XTick’, [12:24:120]);

(c¢) K. Nyholm, 2007 page 164

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[19] axes (handles.axes2.Yield_-Curve), % Plot for Y

[20] plot (Y, 'LinewWidth’,2);

[21] axis([1 120 0 Level+1]);

[22] set(gca,’'XTick’, [12:24:120]);

Line [1] defines the function name according to our choice made for the
"tag” in the property inspector related to the "push button” call-back on
the GUI form. Line [1] is generate automatically by Matlab and should in
general not be changed. What we need to do, though, is first is to organise
the data useful for the drawing of the Nelson-Siegel yield curve. The relevant
variables are stored in the "handles” structure and lines [3]-[7] extracts user-
input values. Line [3] transfers the handle structure to the function so it can
be used further. Lines [4]-[7] subsequently allocates the user-input values to
variables given meaningful names, namely ” Lambda”, ”Level”, ”Slope”, and
"Curvature”. It can be observed how the "handle” structure has allocated
a field to the value of each variable and how the these values can be recov-
ered and reassigned to another variable, as also illustrated above. Line [9]
specifices a variable called "nTau” which will hold the number of maturity
observations that we want to include in the plots. In principle, "nTau” could
also be an input variable, but since its value will only affect the smoothness
of the plotted curves, and since a value of 120 will be adequate for any prac-
tical purposes there seem to be little rational for asking the user to specify
its value. "nTau” is therefore a constant decided by the programmer. Line
[10] generates an nTau-by-1 vector of observations covering the values 1 to
nTau with a step length of 1. Line [11] contains the formula for the Nelson-
Siegel sensitivity matrix called "H”. The used formula is recognised from
equation (5.2). Following equation (5.1), the expected Nelson-Siegel curve
can be calculated when assuming that vector ¢, = 0. This is done in line
[13] and the yields for the 120 maturities are stored in the vector called ”Y?”.
The only remaining issue to be dealt with is to plot the H matrix and the
Y vector in the designated plotting areas on the GUI. Such areas are called
7axes” and lines [15]-[16] show how to plot the factor sensitivity matrix to
the first axes area we generated on the GUI. Usually, in Matlab we start by
using the "figure” command before the ”plot” function to ensure that the
plot we create does not overwrite a previous plot. Similarly, in the GUI we
first activate the axes that we want to plot to, and then we perform the
plot. Line [15] "activates” the plotting area we generated to hold the factor
sensitivity plot. This area was given the name ”axes1-10ading_structure" which

(c¢) K. Nyholm, 2007 page 165

SAA in Fixed Income Markets: A Matlab Based User’s Guide

is contained by the "handles” structure. Line [16] then plots H in the ”acti-
vated” axes. Lines [17] specifies the x- and y-axes, defining the x-axis to span
the values from 1 to 120 (for the maturities) and the y-axes to span 0 to 1.2.
Line [18] concludes the plot by setting the tick size of the x-axes to values
from 12 to 120, with a step size of 12. Since the maturity is denominated in
months it improves the readability of the plot of this is done. The remaining
lines of the above function: lines [19]-[22] completes the plot by allocating
to the second axes ares the calculated Nelson-Siegel yield curve values. This
completed the first part of our Nelson-Siegel example GUL. An example of
how this part of the GUI can be used in given in Figure 8.6.

Melson-Siegel Yield Curve Plotting

Plet Curve

: 5
Lambeia 008 08 1
Level 53

Slope 175

Curveture 025 0.4 i

02 1

12 K B0 B4 108 12 ¥ &0 B4 108
Loading Structure Yield Curve

Figure 8.6: Illustrates the usage of the first part of the Nelson-Siegel example
GUI

8.3.2 Estimating A\ and yield curve factors

To complete our GUI we need to generate a function that allows for estima-
tion of the Lambda variable as well as the Nelson-Siegel yield curve factors.
Based on the User’s choice to estimate either " Lambda” or ”Factors” the user
needs to supply yield curve data as well as the for which maturities the yield
curve data are observed. To this end, the lower part of the Nelson-Siegel
example GUI takes four initial inputs. This input area is highlighted below.
The inputs "Number of Maturities” and ”Number of Yields” helps to define
the input area further. In order for the tool to be able to either estimate
the "Lambda” coefficient or the Nelson-Siegel factors, it needs yield curve

(c¢) K. Nyholm, 2007 page 166

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Initial Parameters

Number of Maturities 8

Number of Yields 625

Estimate
(+ Lambda
" Factors

Populate Input Area Estimate

Figure 8.7: Input area for the lower part of the Nelson-Siegel example GUI.

data. The inputs given for these two variables basically define the size of
the data matrix to contain the yield curve observations and the length of
the vector to hold the maturities at which yields are observed. To store the
values entered in the two input boxes is equal to that explained above and
it is hence omitted here. The second part of the input area defined on the
basis of the inputs in ”Number of Maturities” and ”Number of Yields”. In
particular, the ”push button” call-back ”Populate Input Area” activates two
uitables of appropriate dimensions. The relevant code is shown below.

[5]
[e]
[7]
[8]

[9] colnames (1,j) = cellstr(strcat(’Y-tau ', num2str(j)));

[10] end

[11] % ... populate input area

[12] uicontrol (’Style’,’text’,’String’,’Enter Lambda’, ’‘Position’,
[13] uitable_lambdas = uitable (dat-lambda-full, {’ Lambda’,
'Position’, [310 220 250 35]);

(c)

function Populate_Input.Area-Callback (hObject, eventdata, handles)

handles = guidata (hObject);

nMaturities = handles.nMaturities;

nYields = handles.nYields;
dat-mat = nan(nMaturities, 1);
dat.Y = nan(nYields,nMaturities);

dat_lambda_-full = nan(1,3);

for (j=1l:nMaturities)

K. Nyholm, 2007

[315 260 80 15]);

'Lower’, ’'Upper’ },

page 167

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[14] uicontrol (’Style’,’text’,’String’,’Enter Maturities’, ’'Position’, [315 195 80 15]);
[15] uitable.maturities = uitable (dat.mat, {’tau’}, "Position’, [310 40 105 150]);
[16] uicontrol (’Style’,’text’,’String’,’Enter Yields’, ’‘Position’, [600 195 100 15]);
[17] uitable_Yields = uitable(dat.Y, colnames,’Position’, [430 40 385 150]);
[18] handles.uitable_lambdas = uitable_lambdas;

[19] handles.uitable-maturities= uitable_maturities;
[20] handles.uitable.Yields = uitable_Yields;
[21] guidata (hObject,handles)

Line [1] defines the function name, line [2] loads the "handles” data into
the function, and lines [3]-[4] are standard by now. Lines [5] generates a vector
that will hold the user defined maturities at which yields are observed and line
6] similarly defines a matrix to hold the actual yield curve observations. It is
see that both these input variables are initially given the "nan” values. And,
line [7] genrates a vector to hold the starting and upper and lower bounds
for the ”Lamda” coeficient, if the user chooses to estimate ”Lambda”. Lines
[8]-[10] generates header information for the maturity observations. Lines
[12]-[17] generate the uitables necessary for storing the additional inputs
comprised by maturities, yield curve observations, and the starting value for
lamba together with upper and lower bounds on ”Lambda”. Line [18]-[20]
stores the input in the "handles” structure, and line [21] finally stores the
handle structure for later use. For each uitable input we also generate a title.
One needs to play around with the positioning of the title and the uitable to
get it right. The general principle we use is to define the title via a ”text”
7uicontrol” as illustrated in e.g. line [14]. Then the position and size of the
uitable is defined accordingly, as e.g. in line [15]. This particular area is
generated to hold the vector of maturities. The numbers that are entered
into this uitable are stored in the variable called uitablematurities by setting
this variable equal to the uitable command. The first input to the uitable is
the prespecified data vector, which we called dat_mat, the next input is the
title, in this case we use the title "tau”; next a keyword is given ”position”
which indicates that what follows defines the position of the uitable. The
position is defined by four numbers: (1) distance to left boundary of the GUI,
(2) distance to the floor of the GUI, (3) then the hight, and finally (4) the
width.

If we press the button ” Populate Input Area” the above code is activated
and generates the following expanded input area.

By now we know the major building blocks necessary to construct user

(c¢) K. Nyholm, 2007 page 168

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Melson-Siegel Estimation
— Initial Peremeters —————— Erter Lambda
Mumber of Maturties 8 IJ Lambda | Lower | Upper \
1 Nah| MNal NaM
Number of Yields 635 B o I ‘
Ertter Meturilies Entter Yields
Estimate tau ¥_taul ¥_tauz ¥_taud ¥ _kaud Y _ta
1 Tzl 1 e = Nah e ~|
9 2 Tia 2 Nan Many Tan Nal =
" Factors 2 Nahl 3 Mal Nal LEW Mal
4 Mah o Mah Mal Mah Mah
5 Mah] Mahl MNal Mah Mah
[} Nak] Mahl Nah Nah Mah
Populste Input Area: Estitmate 7 Tah - Nah Nan Nan e
- ! B Nahl R hiahl Niah| (Y] Mall =
4 3

Figure 8.8: The expanded input area.

friendly GUIs. The only feature we still need to present is how to trans-
fer values from a panel of "radio buttons” to the ”handles” structure. This
is shown below in the code that apply to the ”Estimate button”.

[1] function Estimate_Callback (hObject, eventdata, handles)

[2] %

[3] handles = guidata (hObject);

[4] uitable_lambdas = str2double(cell (handles.uitable_lambdas.getData));

[5] uitablematurities = str2double(cell (handles.uitablematurities.getData));

[6] uitable.Yields = str2double (cell (handles.uitable.Yields.getData));

[7] tst = get (handles.Estimate_panel, 'SelectedObject’);

[8] Estimate. = get(tst,’String’);

[9] [nObs nMaturities] = size(uitable_Yields);

[10] if (strcmp(Estimate., ’'Factors’))

[11] [Beta,u,Res,optim] = NS_gui-code (uitable_Yields, uitablematurities, uitable_lambdas,
0);

[12] F...

[13] %... Constructing Output

[14] S...

[15] %... Betas

[16] c_Beta=corr (Beta);

[17] figure; plot(Beta); title(’Estimates factors’); xlabel (’Obs#’); ylabel(’'Value’);

[18] figure;

[19] uitable (Beta, {’Level’, 'Slope’, ’Curvature’}, ’'Position’, [10 30 270 350]);

(c¢) K. Nyholm, 2007 page 169

SAA in Fixed Income Markets: A Matlab Based User’s Guide

[20] uicontrol (' Style’, ’text’,’String’,’Factors’, ’'Position’, [70 385 80 15]);

[21] uitable (c.Beta, {’Level’, 'Slope’, ’Curvature’}, 'Position’, [300 310 250 70]);
[22] uicontrol (' Style’, ’text’,’String’,’Correlation of factor’, ’'Position’, [330 385
200 15]1);

[23] %... residuals

[24] c.u = corr(u);

[25] mu = mean(u),;

[26] figure; surf (u); title(’Residuals’); xlabel('Maturity#’); ylabel(’Obs#’); zlabel(’'Value’),
[27] for (j=1l:nMaturities)

[28] colnames (1,j) = cellstr(strcat(’Res_-tau ', num2str(j)));

[29] end

[30] figure; uitable(u, colnames, ’‘Position’, [50 30 450 350]);

[31] uicontrol (' Style’, ’'text’,’String’, 'Residuals’, ’'Position’, [180 385 80 15]);
[32] figure; uitable(c_u, colnames, ’Position’, [50 180 450 160]);

[33] uicontrol ('Style’,’text’,’String’,’Correlation of Residuals’, ’Position’, [150
345 280 15]);

[34] figure; bar(mu); title(’Average Residuals’); xlabel ('Maturity#’),;

[35] else

[36] [Beta,u,Res,optim] = NS_gui_code (uitable_Yields, uitable_maturities, uitable_lambdas,
1),

[37] ...

[38] %... Constructing Output

[39] S...

[40] figure; plot(Res(:,2),Res(:,1)./nObs); title(’Sum Resid”"2’); xlabel (’Lambda’);

ylabel (' Squared error’);

[41] optimal.L = cellstr(strcat(’'Optimal Lambda= ‘', num2str (Res(optim,2))));
[42] uicontrol (' Style’, ’'text’,’String’,optimalL, ‘Position’, [150 345 280 15]);
[43] end

In the interest of completeness we choose to show the whole function call
for the ”Estimate button” although many of the programming components
included in the function are well-know by now. We will hence not give a
detailed account for all programming lines and steps above but rather focus
on the few issues that have not been clarified so far. It is also seen that the
”Estimate button” function draws on an external function called ns.gui.code.
This code uses components from previous chapters and we will leave it to
the reader to investigate this function further. Here we will only state that it

(c¢) K. Nyholm, 2007 page 170

SAA in Fixed Income Markets: A Matlab Based User’s Guide

contains two basic calculation functions: one that estimates the Nelson-Siegel
A—coefficient and one that estimates the Nelson-Siegel yield curve factors.

Line [7]-[8] show how to extract the choice made by the user in a panel of
"radio buttons”. In the above this is done first by constructing a temporary
variable called "tst” which take the value of the radio button chosen by the
user. This is done by the use of the function call get (handles.Estimate panel,’selectedobject’),
where ”"handles. Estimate_panel” refers to the name of the defined ”radio but-
ton panel” and "selected object” extracts the choice made by the user. Line
8] converts the temporary variable into "string” format and stores this string
the the variable called ”Estimate_” . It is now possible to use this variable
further in the program as it is done for example in line [10], where the func-
tion "strcmp” is used to compare two strings in an effort to execute the code
in a way such that the choice made by the user is fulfilled.

The remaining parts of the code represent familiar material, and we leave
it to the user for further scrutinization.

(c¢) K. Nyholm, 2007 page 171

Chapter 9

Useful Formulas and
Expressions

9.1 Introduction

This section collects some useful formulas and expressions.

9.2 Matrix operations

9.2.1 Definitions

A collection of numbers in a two dimensional array is called a matrix. If the
array has r rows and ¢ columns the matrix A can be defined as:

Ay a2y o Qe
A2,1) A@2,2) 0 G(20) .)

A(r:cc) = . . . = [a(z,j)] , Vi = {1,,7”}/\] = {1,...,0}
A(r1) Qr2) - Qe

When r=1 the matrix is said to be a row vector and when c=1 the matrix is
said to be a column vector. When r=c the matrix is said to be square. The
collection of diagonal elements of a square matrix is denoted by:

172

SAA in Fixed Income Markets: A Matlab Based User’s Guide

a1

d’LCLg [A(m:r)} = a(2:’2) = [a(z,z)} , 1= {1, 27 . ,7”}

9.2.2 Sum
A(rmc) + B(rxc) = Q(r;c) + b(r,c)

(A+B)+C=A+(B+C)

9.2.3 Product
A(rae) * Bexg) = Clrag)

AxB# BxA

9.2.4 Transpose
(AN = A

(A+B+C)' =AT+ BT+ C7
(Ax BxC)' =CT % BT x AT

9.2.5 Symmetric matrix

When A = AT the matrix A is said to be symmetric.

(c¢) K. Nyholm, 2007 page 173

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.2.6 The Identity matrix:

Afre) * L(ce) = Apre)
Atery * Loy = Ager)

9.2.7 Determinant

The determinant is only defined for square matrices. For two-dimentional
matrices the determinant has a geometrical interpretation as the area of the
parallelogram spanned by the two vectors. Generally, the determinant can
be calculated recursively. Let A _. be the matrix A, where the first
row and the ¢’th column has been deleted, then:

n

det (A) = Z(—l)cﬂa(LC) det [A(—l,—c)}

c=1

In a 2x2 case this calculation yields:

det([zlL 3}):1*4*3—1*2*1:10.

det (A x B) = det (A) * det (B)
det (A™') =1/ det (A)

9.2.8 Rank

A matrix is said to have full rank if all columns (rows) are linearly indepen-
dent. A matrix having rank p < ¢, where c is the number of columns in the
matrix is said not to have full rank. Let ¢ be the number of columns and r
be the number of rows of a given matrix, then:

(c¢) K. Nyholm, 2007 page 174

SAA in Fixed Income Markets: A Matlab Based User’s Guide

pAwe] < min(r,c),

p(A) = p(AT)
p(AT*A) = p(A*AT):p(A)

When p (A) = r the matrix is said to have full row rank and when p (A) = ¢
it is said to have full column rank. The rank concept is important because it
relates to the invertability of matrices. For a square matrix S(..) with rank
¢, S is said to be non-singular and a unique S~!, the inverse of S, exists.
When the rank of S is less than ¢, S is said to be singular and its inverse
does not exist.

9.2.9 Inverse

If the determinant of a matrix A,y is different from zero then the inverse
of A exists and is denoted by A~

(AxBxC) ' =C1«B1x A}
()7 = (a7
Ax Al =1
A ' =a7 A7 for a#0
A non-singular matrix is one for which the inverse exists. A singular matrix

is one which has a determinant of zero. Thus, the inverse of a singular matrix
does not exist.

9.2.10 Trace
Tr (A) = Zajj
j

Tr(A+ B)=Tr(A)+Tr(B)
Tr(AxB)=Tr(BxA)

(c¢) K. Nyholm, 2007 page 175

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.2.11 Powers

For a square matrix:
AP =TJ4
k
A =1

9.2.12 Eigenvalues and eigenvectors

For a square matrix A the eigenvalues and eigenvectors can be found as the
solution to:

Axc=Ax1xc

which can be written as:

(A= AxI)*xc=0,

where c is called eigen vector and A\ the associated eigenvalue. From the
above it can be deduced that for ¢ # 0, it must be fulfilled that the matrix
(A — A« 1) is singular, since if (A — A« I) is non-singular we would get ¢ =0
by pre-multiplying the above with (A — A * I)~!. Hence, a solution to the
eigenvalues emerges from:

det(A—Ax1)=0.
9.2.13 Positive definite
The symmetric matrix A, is said to be positive semidefinite if:

s Az >0,

where z(,.1) is a vector. For the positive definite matrix A,y and vector z, 1)
the following holds:

2l s Axx > 0.

(c¢) K. Nyholm, 2007 page 176

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.2.14 Matrix differentiation

For vectors a and b and matrix X the following rules apply:

9 (a™ * b) :8(bT*a) .

0b 0b

8(bT>kX>|<b)
ob

=2% X xb.

9.3 Decompositions

9.3.1 Triangular
A=Lx«Dx LT

is valid and unique for any symmetric positive definite matrix A.

triangular and D is a diagonal matrix.

1 0 0 -+ 0] [din 0 0

l21 1 0 - 0 0 d22 0
L= l31 l32 1 cee and D = 0 0 d33
T S

L lrl lr2 lr3 e 1 _ L 0 0 0

9.3.2 Cholesky
A=PxPT,

L is lower

where P = L * DY/?, using the notation from the above triangular factorisa-
tion. So, P is lower triangular as L, however its diagonal is populated by the

square root of the elements of D.

[Vdi 0 0 e 0
lorvdyr +da 0 0

P=| Isivdi l3v/day /dss :

: : : 0
| Livdi Levdee Ls/dss - Vdey |

(c¢) K. Nyholm, 2007

page 177

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.3.3 Eigenvalue
A=CxAxC

is the eigenvalue decomposition when A has eigenvalues that are different
from each other. A collects the eigenvalues along the diagonal and C' collects
the eigenvectors.

A 0 0 - 0]
0 X O --- 0
’ . €t C C3 -+ Cp
A(T7T)= 0 0)\3 . and 0(7’77“):
SR U | T
0 0 0 - A\ |

Since the eigenvalues are distinct the determinant of C' exists and so does
then C~!. Note that:

A=CxAxC 1o AxC=CxA,

9.4 Basic rules

9.4.1 Index rules

a™ % a" = amt" Equal bases
a™xb™ = (axb)" Equal indices
a™/b™ = (a/b)"

a " =1/a"

(@™)" = a™" Power of a power rule
a®=1

va = a'/™ Square root

(c¢) K. Nyholm, 2007 page 178

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.4.2 Logarithm rules

In(e) =
In(1) =

9.4.3 Simple derivatives

[(x) /' (z)
c — 0
In (z) — 1
e’ — e
ek:x N kekx
a® — a”In(a)
z° — azr®!
L=ot) o —d(=-a)
o)~ (=g
sin () — cos ()
cos () — —sin ()
Definition
vy _ 4 flx+h)— f(x)
fle) =gz = i h
Linearity
d _df(z) | dg(x)
o @ +g(@)]=——- jrpat
d &
Llenf @) =ex LL

Product rule

(c¢) K. Nyholm, 2007

page 179

SAA in Fixed Income Markets: A Matlab Based User’s Guide

Quotient rule

% {m)] _ S @9 (@) = @)+ (7)
dz | g (z) g ($)]2
Chain rule
T =)] = @) g) = L4 2L

f(x) F(z)

0 — k

k — kx

In (z) — zln(x)—x
e’ — e’

ek:x N lekx

a® — m“(—w)

70 N %Hxa-i-l

% (=271 — In|z|
Vo) doyE (=3
sin () — —cos ()
cos () — sin(x)

Indefinite integral

/f(a:)dx:F(a:)+c.

Integration is linear

[lt@+g@ldo= [f@adrt [g@an

if ¢ is a constant
/cf(x)dx:c/f(x)dx.

Definite integral

(c¢) K. Nyholm, 2007

page 180

SAA in Fixed Income Markets: A Matlab Based User’s Guide

/aaf@:)dx:o,

[rwa=-["s@a

/abf(x)dx+/bcf(x)dx:/acf(x)dx.

9.5 Distributions

9.5.1 Normal

Foi (1) = —w—p)] ,

1
ex
24/ 27102 P [202

the variable Y; has a normal distribution with mean p and variance o2, i.e.
Yi~ N (:u’ 02) :

9.5.2 Multivariate normal
fr () =)10 exp [(-1/2) (y — p) Q7L (y —)],
with E [(Y —) (Y —)] = Q. Note that |0 /* = Q1'%

9.5.3 t-distribution

[to be inserted]

9.5.4 Copulas

[to be inserted]

(c¢) K. Nyholm, 2007 page 181

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.5.5 Vasicek’s limiting distribution

This density is relevant in credit risk applications and gives the distribution
of losses due to default based on the following inputs: p is the correlation
between issuers/bonds and p is the default probability. It is assumed that p
and p are identical across all issuers/bonds. The density gives the limiting
loss distribution for a portfolio with k& issuers/bonds where k& — oco.

1-— 1

=y o {_2%) (VI=pN @) - N (p)>2+ 2

).

where N~ is the inverse normal distribution. The cumulative distribution
function is given by:

I) =N)
= .

The loss distribution is defined on the interval 0 < z < 1, so x can be
interpreted as the fraction of the portfolio that is lost.

anm=N<

9.6 Functions

9.6.1 Linear (affine) function

f@)=c+bxzx

where ¢ and b are scalar constants. ¢ is the function value when x = 0 and
hence where the function crosses the y-axis; this is also referred to as the
intercept. b is the slope of the function i.e. how much it responds to the
variable z. In a matrix context the linear equation of many variables can be
expresses in a compact form as:

L1 Tot te Tt by
Tit—1 T2t—1 - Tpg-1 by

Yy = c+ : : : || =+ Xe x b
X1,1 To1 Tn,1 by,

where 1, xs, ... represent different variables and the vector b collects the slope
coefficients for each variable.

(c¢) K. Nyholm, 2007 page 182

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.6.2 Quadratic function
f@)=c+b*x+axa?

where ¢, b and a are scalar constants. The solutions:

—bE Vb2 —4dxaxc

2%a

if B2 >4dxa%c = Tio =

if b < 4% a * ¢ then the quadratic equation has no real roots (but a solution
with complex roots exists). The function has a maximum point if a < 0 i.e.
then it is N—shaped, and a minimum point if a > 0 i.e. then it is U—shaped.
This minimum or maximum point is defined by:

P b 4dxaxc— b
12— 2%xa’ 4xaq)

9.6.3 General polynominals

f(x):an*x”—i—an_l*x”_1+...+a*x+a20

is a polynominal of order n.

9.6.4 Exponential
f(x) =a”

is a general exponential function with base a. Using the natural base e =
2.718 gives the natural exponential function:

f(z) =exp(z) =e".

9.6.5 Logarithm
f(x) =n(z),

y=In(zr) <= z=¢"

(c¢) K. Nyholm, 2007 page 183

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.6.6 FError function

erf (z) = %/0 e du

is the integral of the standard normal distribution.

9.6.7 Inverse

fH(2)
is said to be the inverse function of f (x). It is important to note that f~! ()

does not mean 1/f (z) i.e. 7 —1” does not refer to the power of the function
as is otherwise customary. Some examples are:

fx) ()
In (x) exp ()
xa/b xb/a
% l,l/a

A graphical illustration is shown below for the cumulative normal distribution
and its inverse:

X
1 4

09

[uf:]

07

06

0s 0

04

03

02

a1

0 ‘ L L 4 L L L L
-4 2 a 2 4 [1} 0.z 04 06 08 1

An example of a function and its inverse

9.7 Taylor series approximation

df 1af o, 1df 4 1df .,

r! is the factorial of r i.e. r* (r—1)* (r—2)*...%x 2% 1.

(c¢) K. Nyholm, 2007 page 184

SAA in Fixed Income Markets: A Matlab Based User’s Guide

9.8 Interest rates, returns and portfolio statis-
tics

The formulas and expressions given below shows how to calculate interest
rates and returns over multiple periods. It is also shown how summary risk
measures like modified duration can be aggregated at the portfolio level.

9.8.1 Cummulative arithmetic return

n
TMp=T1+To+...+1, = E T
J=1

9.8.2 Average arithmetic return

_ 1 1
= — x n) = — % ,
T " (ri4+re+...4+m) - E T

9.8.3 Cummulative geometric return

rl,n:[(1+7~1)*(1+7~2)*...*(1+rn)]—1:H(1+7~j)—1

J=1

if the interest rate in each period is the same then the expression becomes:

7’17n:(1—|—7’)n—1

9.8.4 Average geometric return
n 1/n
F=[1+r)«(14r) ... x(1+r)]"" 1= [H(1+rj) -1

j=1

9.8.5 Compounding of interest rates

Let m be the compounding interval, e.g. m = 12 means that the annual rate
of r is paid on a monthly basis, then the effective interest rate is:

ot = 14 (Z)]" -1

(c¢) K. Nyholm, 2007 page 185

SAA in Fixed Income Markets: A Matlab Based User’s Guide

In the case of continously compounded interest rate, i.e. when m — oo the
effective rate can be calculated by:

reff =em —1
and for multiple periods this becomes:

eff _ _rxn
i, =€ — 1

9.8.6 Portfolio statistics

Let w be the vector of amounts invested in each of the j securities covered
by the eligible investment universe. Let r be the vector of expected returns,
C the expected covariance matrix, M D the vector of modified durations and
Conw the vector of convexities. Then, letting p denote portfolio level and o>
the variance, the following applies:

T
Ty =W *T

af,:wT*C’*w
MD, =w"*MD

Conv, = w? * Conw

(c¢) K. Nyholm, 2007 page 186

Bibliography

ANG, A., aND M. P1azZzESI (2003): “A No-Arbitrage Vector Autoregression
of Term Structure Dynamics with Macroeconomic and Latent Variables,”
Journal of Monetary Economics, 50(4), 745-787.

ANG, A., M. P1azzgs1, anp M. WEI (2006): “What Does the Yield Curve
Tell us about GDP Growth,” Journal of Econometrics, 131, 359—-403.

BJork, T. (2004): Arbitrage Theory in Continuous Time. Oxford University
Press, Oxford.

BRANDIMARTE, P. (2002): Numerical Methods in Finance. Wiley, New
York.

Brico, D., anp F. MERCURIO (2001): Interest Rate Models, Theory and
Practice. Springer Finance, Berlin.

CAIRNS, A. J. G. (2004): Interest Rate Models - An Introduction. Princeton
University Press, Princeton, New Jersey.

CaMPBELL, J. W., A. W. Lo, anp A. C. MACKINLAY (1997): The
Econometrics of Financial Markets. Princeton University Press, Princeton,
New Jersey.

CHEN, R., anp L. ScotrT (1993): “Maximum likelihood estimation for a

multi-factor equilibrium model of the term structure of interest rates,”
Journal of Fized Income, 3, 14-31.

CHRISTENSEN, J., F. DIEBOLD, AND G. RUDEBUSCH (2007): “The affine
arbitrage-free class of nelson-siegel term structure models,” Federal Re-
serve Bank of San Francisco and University of Pennsylvania.

187

SAA in Fixed Income Markets: A Matlab Based User’s Guide

CoroNEO, L., K. Nynorm, anp R. VIDOVA-KOLEVA (2007): “How
Arbitrage-Free is the Nelson-Siegel Model,” Risk Management Division,
FEuropean Central Bank.

Cox, J., J. INGERSOLL, AND S. Ross (1985): “A Theory of the Term
Structure of Interest Rates,” Econometrica, 53, 385-407.

Dar1, Q., anp K. SINGLETON (2000): “Specification analysis of affine term
structure models,” Journal of Finance, 55, 1943—-1978.

DieBOLD, F., anp C. L1 (2006): “Forecasting the Term Structure of Gov-
ernment Bond Yields,” Journal of Econometrics, 130, 337-364.

DowN, K. (2005): Measuring Market Risk. Wiley Finance, Chichester, West
Sussex, PO19 8SQ, England.

DurrIE, D., aND R. KAN (1996): “A yield-factor model of interest rates,”
Mathematical Finance, 6(379-406).

GLASSERMAN, P. (2004): Monte Carlo Methods in Financial Engineering.
Springer-Verlag, New York.

GREENE, W. H. (1993): Econometric Analysis. Macmillian Publishing Com-
pany.

HAMILTON, J. D. (1994): Time Series Analysis. Princeton University Press,
Princeton, New Jersey.

Huang, C., axp R. H. LITZENBERGER (1988): Foundations for Financial
Economics. Prentice-Hall.

JACKEL, P. (2002): Monte Carlo Methods in Finance. Wiley, West Sussex,
England.

JAMES, J., anpD N. WEBBER (2000): Interest Rate Modelling. John Wiley
and Sons, West Sussex, England.

JOHNSON, R. A.; anp D. W. WICHERN (1992): Applied Multivariate Sta-
tistical Analysis. Prentice-Hall, London.

Kim, C., anp C. NELSON (2000): State Space Models with Regime Switches.
MIT press.

(c¢) K. Nyholm, 2007 page 188

SAA in Fixed Income Markets: A Matlab Based User’s Guide

LIPSCHUTZ, S., AND M. L. LiPsoN (2001): Schaums outline of linear alge-
bra. McGraw-Hill, New York.

LITTERMAN, R., AND J. SCHEINKMAN (1991): “Common Factors Affecting
Bond Returns,” Journal of Fized Income, June, 54—61.

LUENBERGER, D. G. (1998): Investment Science. Oxford University Press,
New York.

LunD, J. (1998): Review of Continuous-Time Term-Structure Models.
www.jesperlund.com.

McLEisH, D. L. (2005): Monte Carlo Simulation and Finance. Wiley, New
Jersey.

MERTON, R. (1973): “Theory of Rational Option Pricing,” Bell Journal of
Economics and Management Science, 4, 141-183.

MEeuccr, A. (2005): Risk and Asset Allocation. Springer Finance, Springer-
Verlag Berlin Heidelberg New York.

MiLLs, T. C. (1999): The Econometric Modelling of Financial Time Series.
Cambridge University Press, Cambridge.

MONCH, E. (2006): “Forecasting the Yield Curve in a Data-Rich Environ-
ment: A No-Arbitrage Factor-Augmented VAR Approach,” ECB Working
Paper series No. 544.

NELsoN, C. R., anp A. F. SIEGEL (1987): “Parsimonious Modeling of
Yield Curves,” Journal of Business, 60, 473-489.

REBONATO, R. (1998): Interest-Rate Option Models. John Wiley and Sons,
West Sussex, England.

SODERLIND, P., aND L. SVENSSON (1997): “New Techniques to Extract

Market Expectations from Financial Instruments,” Journal of Monetary
Economics, 40, 383-429.

TAYLOR, J. (1993): “Discretion versus Policy Rules in Practice,” Carnegie-
Rochester Conference Series on Public Policy, 39, 195-214.

TUCKMAN, B. (2002): Fized Income Securities. Wiley, New Jersey.

(c¢) K. Nyholm, 2007 page 189

SAA in Fixed Income Markets: A Matlab Based User’s Guide

VASICEK, O. (1977): “An Equilibrium Characterization of the Term Struc-
ture,” Journal of Financial Economics, 5, 177-188.

(c) K. Nyholm, 2007 page 190

