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Preface

These lecture notes were written during the fall of 2018 and are intended as background readings for an
internal two-day course in the Risk Management Directorate of the European Central Bank. I have strived
to be as comprehensive as possible in the coverage of the included materials, while adhering to the over all
premise that the notes should have a strong focus on the practical application of term structure models.

To emphasise the applied nature of the lecture notes, I have included MATLAB transcripts at the end
of most chapters, and the lecture notes are accompanied by a set of newly programmed MATLAB object
oriented classes that facilitates estimation the yield curve models used in the notes. Almost all the empirical
examples and results shown in the notes can be replicated using the included MATLAB code. Of course,
no warranty is provided for the code, and bugs are very likely still lurking around.

A tentative course outline is given below (times are naturally tentative and depends on how much time
you want to spend on the different topics):

Chapter Topics Time

Introduction Day 1. 9:30-9:45

Learning objectives

1 Empirical analysis of yield curve data Day 1. 9:45 - 11:15

2 The P and Q measures Day 1. 11:15 - 12:15

Lunch Day 1. 12:15 - 13:15

3 The basic yield curve modelling set-up Day 1. 13:15 - 15:15

4 Modelling yields under the Q- measure Day 1. 15:15 - 17:15

5 Model implementation Day 2. 10:00 - 11:15

6 Scenario generation with yield curve models Day 2. 11:15 - 13:15

Lunch Day 2. 12:15 - 13:15

Summary, discussion, and feedback Day 2. 13:15 - 15:00

The objective of the course is to make participants able to implement existing dynamic term structure
models and to use them for scenario-generation purposes. The materials and examples cover both arbitrage-
free affine and Nelson-Siegel type models. Emphasis is put exclusively on developing practical modelling
skills, and selected parts of the underlying theory are presented to meet this end.
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An overview of the MATLAB classes that I have programmed to help digest the content of this course is
provided below. In addition to these generic functionalities I provide MATLAB scripts at the end of each
empirically tilted chapter. To provide an overview, a list of these script files is also provided below. Note
that all the provided codes can be inspected in MATLAB by typing edit and then the name of the code
you want to see. It is recommended that the attached zip file is unpacked in a separate directory, and that
the path (with sub-folders) is added to the MATLAB path.

The data that are used throughout these lecture notes are contained in the MATLAB files:
Data TSM Course 2018.mat and Data GSW factors Course 2018.mat .

To illustrate how shadow-short rate models work, I have created a small graphical MATLAB add-in.
This add-in can be installed by double clicking on the file name: ShadowRateExample.mlappinstall. More
information on this is provided in chapter 3.5.

GSW.m is a class-file that can be used to convert Gurkaynak, Sack, and Wright (2006) yield curve factors,
and in general Svensson and Söderlind (1997) factors, into yields at a set of pre-specified maturity points.
The help file for this class is shown below.
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TSM.m is a class-file that allows for the estimation of various term structure models. The help file for
this class is reproduced below.
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TSM2SSM.m is a class that translates an estimated TSM model into MATLAB’s state-space format. This
is for example relevant if we want to use MATLAB’s built-in kalman-filter routines to generate conditional
projections for the estimated yield curve factors. Once a TSM model has been estimated, the TSM2SSM
class can be used to translate the model into SSM format. The help file for this class file is shown below.

EX Script Classes.m is a script filed that provides information on how class files are run. Many more examples
are given in the end-chapter codes listed below:

1. Empirical Investigation of Observed Yields.m
2. P and Q Measure Vasicek State Space.m
3. P and Q Measure Vasicek 2 step approach.m
4. Basic yield curve setup.m
5. Modelling yields under Q.m
6. P and Q Measure 1.m1

7. Scenario and forecasting.m

1 Used just for illustration, not shown as end-chapter code.
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1

Empirical analysis of term structure data

1.1 Introduction

Before looking at the empirical behaviour of yields, we need to introduce some notation. Let yτt denote a

set of yields that together form a yield curve, i.e. a vector that stacks individual annual yields, with the

same dating, t, but that are observed at different maturities, τ . In the practical examples included in these

lecture notes, we will typically use τ = {3, 12, 24, . . . , 120} months, but τ can naturally take any value, at

which yields are observed. When referring to a panel of yield observations (of dimension number of dates

by number of maturities), i.e. a collection of yield curves observed at different dates, we will either write

y, yτ , or Y .

In a factor model, X, will denote the extracted factors, and H,G, or B, will typically denote the

corresponding loading matrix. Vector autoregressive models will be written as zt = m+Φ · (zt−1−m) + et,

when written in mean-adjusted form, and sometimes as zt = c + Φ · zt−1 + et, when written in constant

form, i.e. m = [I − Φ]−1 · c.

At this point it may also be worth recalling that the yield curve is a by-product of the financial market

trading process. Agents trade bonds that are quoted in prices, pτt . A risk free bond, the ones we primarily

deal with here, guarantee to pay Eur 1 (in reality some scaling of 1, most often Eur 100) at the maturity

of the bond. The price today is therefore, as always in finance, the discounted value of the future promise

(to avoid confusion on the notation used, note that here yτt refers to a number, e.g. 0.05 (5%), and not to

a number that is raised to the power τ (the same goes for P τt ), however, on the RHS of the equation, the

expression is raised to the power of τ): P τt = 1 · (1 + yτt )
−τ ⇔ yτt = (P τt )

1/−τ − 1, in discrete time, and

P τt = 1 · e−yτt ·τ ⇔ yτt = − 1
τ · log (P τt ), in continuous time.

We will exclusively be modelling Zero coupon bonds. Such data are important because they form the

basis for fixed income pricing: since all coupon paying bonds can be expressed as portfolios of zero coupon

bonds (of relevant maturities), once we know the prices of zero coupon bonds, we can also find the market-

equilibrium price all existing coupon paying bonds. Most often, however, we do not work with prices, but

instead focus on rates/yields, i.e. on the annualised percentage return the bonds gives, if we hold it to
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maturity. As implied by its name, a zero coupon bond does not pay any coupons during its life, and its

cashflow stream is therefore simple, as illustrated in figure 1.1 for zero coupon bonds of 1, 2, and 10-year

maturities.

P τ=1y
t

1e

1y

P τ=2y
t

1y 2y

1e

P τ=10y
t

1e

1y 2y 10y

Fig. 1.1. Zero coupon cashflows

Typically, we get zero coupon data from Bloomberg, Reuters, or the ECB’s statistical data warehouse.

These data are available at daily, weekly, and monthly observation frequencies, and at predefined target

maturities, for example at {0.25, 1, 2, . . . , 10, 15, 20, 30} years.

1.2 Exploring yield curve data

The example data used in this section are stored in the MATLAB workspace file named ”Data TSM Course 2018.

Data are available for the US, Germany, and for the euro area OIS curve. For each segment we have yields

in percent per annum across maturities, as well as model based estimates for the expectations component

and the term premium, both for the 10 year maturity point. We will return to these latter two variables

later on, and for now only focus on the yield curve data. Let’s load and plot these data: each data set

contains monthly observations for the following variables: date, yield3m, yield1Y, yield2Y, ..., yield10Y,

and spans the period from January 1999 to April 2018, i.e. a total of 232 time series observations for each of

the 6 included maturities per yield curve segment. In addition to the time series evolution of yields shown

in Figure 1.2 it is also informative to see what the yield curve looks like in the cross sectional dimension.

For example, what does the average yield curve look like? And, what are some of the most extreme shapes

and locations that yield have displayed historically? These questions are explored below.
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The figure shows the time series of yields, observed monthly and covering the period from January
1999 to April 2018, for maturities of 3-months, 1-year, 2-year, 5-year, 7-year, and 10-year. Yields
for the US, Germany, and the euro area are included in the plot.

Fig. 1.2. Yield curve data
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The figure shows German yield curves on the days when the slope (yτ=10y-yτ=3m) reached its

minimum, maximum and average value, for the period from January 1999 to April 2018.

Fig. 1.4. German yields with varying slopes
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The figure shows the mean, median, min, and max of the German yields observed at a monthly
frequency and covering the period from January 1999 to April 2018. The statistics are calculated
across maturities.

Fig. 1.3. Summary of German yield curve data

None of the curves shown in Figures 1.3 and 1.4 may actually have materialised historically, since the

calculations are done for each of the maturity points separately.

Going back to the time series plots of the yields observed for the US, German, and OIS market segments,

it is also interesting to observe that there is a very high degree of correlation among yields within a given

market segment, and that a similarly high degree of correlation exists between market segments. It almost

seems as if every little up- and down-ward movement in one maturity is mirrored by the other maturities

in that market segments, with more pronounced movements the higher the maturity. Similarly, the secular

swings that yields display over the 20 years of data are equally well visible across market segments.

A more structured view on the within and between segment correlation is illustrated below. For

presentational purposes, correlations are shown only for a subset of the included maturities.

Figure 1.5 provides a visual representation of the correlation between German and US yields. If we

had included other or additional yield curve segments, in addition to the 3months, 5year, and 10year

maturities, we would get qualitatively identical results. As expected based on the visual inspection of the

time series plots, the cross correlations confirm our suspicion: yields within and across yield segments are

very highly correlated. Note that a red number in the above correlation matrix indicates that the correlation

is statistically significant from zero at a 1% significance level.

We could repeat the above correlation analysis for the first differences of the yield series - this would

for example make sense, if yields were believed to be I(1) processes (i.e. integrated of order one). And, if

we did this, we would obtain a correlation picture that is qualitatively identical to the one above.
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The figure shows the pair-wise correlation between US and German yields observed at a monthly
frequency and covering the period from January 1999 to April 2018. Correlations are calculated
between the 3-month, 5-year, and 10-year maturity points. In each sub-element of the figure, the
red number indicates the correlation coefficient, and the red line shows the fitted regression line.
On the diagonal, histograms of the series are plotted.

Fig. 1.5. Yield curve data

Now, looking at the time series plots of the yield curve segments above, the conclusion that one may

reach, based on a preliminary and casual visual inspection, is that the behaviour displayed by yields is

somewhat different from what most people have in the back of their mind, when they think about the

trajectory of a stationary I(0) process. While this is a relevant thought, the discussion of stationarity will

be taken up later on, when we discuss the eigenvalues of estimated vector autoregressive processes (VAR

models - not to be confused with VaR, i.e. value-at -risk). For now, we treat observed yields as coming

from a stationary data generating process.

How can the overwhelming degree of correlation between yields be exploited? The answer is: by using

Principal Component Analysis (PCA)/ factor models. At this stage, it is worth noting that virtually all

term structure models, as well as many other important financial models, e.g. ATP and CAPM for equity

return modelling, rely heavily on PCA modelling principles. In fact, this econometric technique is quite
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possibly the single mostly important modelling idea, in the field of quantitative time-series finance - to my

mind, it is as important as PDEs (partial differential equations) are to the branch of finance that deals

with derivative pricing. It is therefore fairly important to master this technique. The good news is, that it

is not difficult at all.

Before embarking on the factor modelling principle, it is worth spending a few minutes on realising that

modelling multiple yields directly is generally not a good idea. Arguments against this modelling strategy

are, amongst others:

• The number of yields modelled may vary from market to market and over time. It is therefore not clear

which maturities that should be included in the model.

• One may need to adapt the dimension of the model, depending on which market that is modelled. This

is inconvenient as well as model results may not be comparable.

• Since correlation between yields is so high, we may run into the problem of multicollinearity

• Projected yield curves and yield curve forecasts may turn out to violate standard regularities, e.g.

individual yield curve points may be out of sync with the rest of the curve.

• The econometrician has very little control over the simulations, for example, it is difficult to steer the

projections in a certain direction, if that is desired. Likewise, it is difficult to avoid certain (unrealistic)

yield curve shapes and developments.

This last point is illustrated in Figure 1.6, using the German data. It is dangerous these days to make

statements about whether a given simulated yield curve has a realistic shape or not - and the future

may prove me wrong - but despite what we have seen over the past years, I believe that the depicted

simulated curves in Figure 1.7 are too oddly shaped to be considered for financial analysis (unless for some

wild economic scenario): this applies to their shape and location, and to the overall simulated trajectory

(Figure 1.6) for the yields over the coming 42 months. One may of course have a rule-of-thumb and program

a routine that kicks out too oddly looking yield constellations and trajectories, but why bother? Why not

simply follow the mainstream and well proven approach, i.e. to rely on factor models? This is what we will

do next.

1.3 A first look at Principal Component models

Dimension reduction is one of the great feats of PCA / factors models: the core idea is that the majority

of the variability of a given data set derives from a few underlying (sometimes not directly observable)

factors. This concept is familiar, for example, the well-known CAPM prescribes that a single market factor

is responsible for the expected return on all equities traded in the economy. Recall that the security market

line is written as: E[ri] = rf + βi · (rm − rf ), where investors are rewarded only for taking market risk in

excess of the risk free rate. rm is the return on the market portfolio, i.e. the underlying factor in this model,
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The figure shows how one can do naive forecasts of the yield curve, and what problems this may
bring. A VAR model is fitted to individual maturity points using the full historical sample (from
1999 to 2018) of German yields. Each maturity is then projected 42 monthly periods ahead using
the VAR. These projections are started at the last observation covered by the data sample.

Fig. 1.6. Yield curve data

rf is the observable risk free rate, and βi is the sensitivity of the i’th security’s return, ri. In factor model

language, rf is the constant, rm is the underlying factor, and βi is the factor sensitivity that translates

the factor observation into something that is applicable to the i’th security. We can naturally operate with

more than one factor. Typically, term structure models include between 1 and 5 factors.

In general terms, and using matrix notation, we can write a factor model for the yield data in the

following way:

Yt︸︷︷︸
nτ × 1

= G︸︷︷︸
nτ × nF

· Xt︸︷︷︸
nF × 1

+ Σ︸︷︷︸
nτ × nτ

· et︸︷︷︸
nτ × 1

et ∼ N(0, I) (1.1)

The dimensions of the variables are recorded below each entry, with nτ being the number of maturities

that together form the yield curve, and nF being the number of included factors. So, our first job when

using factor models is to settle on an appropriate number of factor to extract, i.e. to choose nF . But before

getting to that point lets first get more familiar with the factor model concept.

Looking at the expression for Yt in (1.1) indicates that if we know the factor loadings G, then we can

find the factors Xt using linear regression, or by inversion. Underline the previous sentence! - we will use

this ’trick’ extensively when dealing with Nelson-Siegel type yield curve models later on. To preview a bit,
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The figure shows randomly selected sample curves picked among the 42 projected curves.

Fig. 1.7. Yield curve data

let’s quickly see how to back out the factors X using the full set of data - as mentioned, we will return to

this issue in greater detail later on. First we write the above expression in terms of the full data set:

E [Y ]︸ ︷︷ ︸
(nτ × nObs)

= G︸︷︷︸
nτ × nF

· X︸︷︷︸
nF × nObs

where nObs is the number of dates the data spans. Assume G is known, then, in the context of an OLS

regression, G represents the explanatory variables and X the parameters to be estimated. We can therefore

find X in the following ways:

X̂ = G−1 · Y (1.2)

or

X̂ = (G′ ·G)−1 ·G′ · Y (1.3)

where the first equation in (1.2) represents a pure inversion, and the second is the standard OLS formula.

Returning to the main topic of this section, i.e. factor models, let’s see if the OIS and US data hide some

interesting underlying patterns (i.e. factors), and let’s try to construct a completely data-driven joint model

for these to yield curve segments on the basis of such underlying factors.
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The intention here is only to show how factor models can be useful for modelling term structure data,

without infusing any term structure modelling knowledge - in other words, the illustrated strategy may be

what an econometrician would choose to do, if she had not received any term structure schooling. Later

on in the course, it will become clear, that such an econometrician can actually be quite successful at

modelling term structure data!

A clarification about the term “factor models” is warranted here. When I refer to ”factor models”

and ”factors” I do in fact mean ”Principal Components”, i.e. the outcome of applying the PCA function

in MATLAB. So, through-out, it assume that yield curve factors can be formed as weighted averages of

observed yields. Alternatively, if a true factor modelling approach was applied, the starting point would be

some underlying latent factors that were causing the evolution observed in the yield curve, and we would

try to extract these factors. As we shall see, we will typically revert to factors that are directly interpretable

in terms of yield curve observables, e.g. the level, slope and curvature of the yields curve, or actual maturity

points on the yield curve - we will not, however, include unobservable quantities, such as e.g. the effective

stance of monetary policy, or the natural long-term rate, as factors in the models that we work with in

these lecture notes.

Individual eigenvalues express how much of the overall variability in the data set, the respective

eigenvector explains. To help decide how many factors that we need to include in our model, we can

therefore link the number of factors to the overall variance that we want our model to capture. Table 1.3

shows the cumulative fraction explained by the first six extracted principal components/factors explain of

the US and euro area OIS data. So, 4 factors capture 100% of the historical variability of both US yields

US EA OIS

1st 0.9453 0.9755

2nd 0.9958 0.9982

3rd 0.9992 1.0000

4th 0.9999 1.0000

5th 1.0000 1.0000

6th 1.0000 1.0000

The table shows the cumulative fraction of variability explained by the principal components
extracted from US and euro area yield curve data. The data covers the period from January 1999
to April 2018 and are observed monthly. The following yearly maturity points are included in the
data sets: 0.25, 1, 2, 5, 7, 10.

Table 1.1. Cumulative variability explained by the extracted yield curve factors

and OIS rates. That such a low number of factors explain all the variability underscores the high degree

of cross-sectional correlation that we also documented above. If we believe that some of the variability in

the observed data is due to noise, we should chose to model less than 4 factors: we don’t want a model
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that propagates idiosyncratic noise from the past into the future. 3 factors also look to be on the high side,

so a sensible choice may be to include 2 factors. In fact, the explained variability may suggest that only 1

factor is needed, since the most important factor explains 95% of the variability in the US data, and 98% of

the variability in the OIS data. But, a model with just one factor is quite boring: in terms of e.g. scenario

dynamics, it can only generate parallel shifts of the yield curve (i.e. duration effects), so also with a view

to the type of yield curve perturbations a model can generate, it may be advisable to include a minimum

of 2 factors.

But wait. If we want to construct a joint model for the two yield curve segments, perhaps it makes

sense to include only one base segment and model the other segment as a spread curve against the chosen

base-curve. What does the loading structure of the spread between the OIS and the US yield curves look

like in comparison to the loading structure of the yield curves?
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The figure shows the empirical loading structure for the US data (upper panel), the euro area OIS
data (middle panel) and for teh spread between the US and euro area OIS data (lower panel). The
loading structure are obtained using principal component analysis.

Fig. 1.8. Yield curve data

Figure 1.8 shows the empirical loadings for the two estimated factors for the US and OIS data. It is

interesting to see how similar the loadings are, both between the two yield curve segments, and between

yield and spread loadings. This may even spark some curiosity, and desire to look at these phenomena

in more detail: could it be that there are financially interpretable forces behind the observed patterns?

And, going further, is it conceivable that such financial forces could be connected to developments in the
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broader economy, perhaps to expectations about growth, inflation, and agents perception about the risk?

That would be something! We will save this issue for a later chapter, once we are armed with better yield

curve modelling skills - remember: in this chapter we act as pure econometricians.

Given the similarity between the extracted loading structures, it seems reasonable to model the OIS

term structure as a base element and the US curve as a spread element. Naturally, we could equally well

do it the other way around, but since euro area OIS data probably is closer to our hearts, granted the

geographical location of our workplace, our choice is made.

OIS US

3m 1y 2y 5y 7y 10y 3m 1y 2y 5y 7y 10y

RMSE 20 4 16 22 9 20 20 10 21 27 5 39

The table displays the fit of the joined yield curve model, comprising US and euro area OIS data, to
the used data. The degree of fit is assessed via the root mean squared error (RMSE) denominated
in basis points.

Table 1.2. Factor correlations

The RMSEs delivered by this model are ok, without being overly impressive. To provide a visual

comparison between observed and model fitted yields, below we plot the 3month and 10y segments of the

OIS and US yield curve segments.
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The figure shows factor loadings for the US data, for the euro area OIS data, and for the spread

between the US and the euro area data.

Fig. 1.9. Empirical loading structures

It is now natural to add dynamics to our empirical model, such that we can use it as a projection and

scenario-generation tool. To do this, we assume that a VAR(p) model is an appropriate devise to capture

the dynamic behaviour of the yield curve factors. First, we want to identify the log-order p. Following the

BIC criterion, a VAR(1) model is applied as an adequate description of the law of motion for the 4 yield

curve factors. Our purely empirically derived joint OIS and US yield curve model is then ready to be put

to work. The model can be summarised in the following way:yOIS
yUS


t

=

 GOIS 0

GOIS Gsprd

 ·
 XOIS

Xsprd


t

+Σet (1.4)

 XOIS

Xsprd


t

=

 cOIS

csprd

+

 ΦOIS,OIS ΦOIS,sprd

Φsprd,OIS Φsprd,sprd

 ·
 XOIS

Xsprd


t−1

+Σvt (1.5)

Eigenvalues of Φ is [0.9866, 0.9866, 0.9770, 0.8586]. Given that the maximum eigenvalue of the auroregressive

matrix is less than one, the estimated VAR is stationary. So, lets see what kind of yield and return
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projections we can generate using this model. But, before we embark on this exercise, lets first backtest

the model using a pseudo out-of-sample forecasting experiment. Our data sample covers 232 monthly

observations from January 1999 to April 2018, and last five years of the sample is used for backtesting

purposes. Naturally, this choice is somewhat arbitrary, since other equally appropriate combinations of

the amount of data available for the first estimation of the model, and number of datapoints available for

backtesting, naturally exists. The backtesting exercise is therefore structured in the following way:

• the model is estimated using data from January 1999 to May 2013

• Factor projections are generated using the Dynamic Model for the yield curve factors, shown above.

Projections are generated for months 1 to 6 ahead, i.e. for April, May,...,September 2013

• The factor projections are converted to yields using the Yield Equation, shown above

• Projected yields are compared to observed yields at the appropriate horizon

• As a comparison, random walk projections are also generated and compared to the relevant observed

yields

• One month is added to the dataset used to estimate the model and above steps are repeated until the

end of the dataset is reached

OIS US

3m 1y 2y 5y 7y 10y 3m 1y 2y 5y 7y 10y

Model

Fitted 16 3 12 21 10 19 20 7 21 26 4 39

Forecast 1m ahead 15 5 15 26 18 21 15 10 25 30 20 46

Forecast 2m ahead 15 6 18 31 23 23 12 13 28 32 25 50

Forecast 3m ahead 14 8 20 35 29 26 10 17 30 34 29 53

Forecast 4m ahead 14 10 23 39 34 30 12 21 34 36 31 54

Forecast 5m ahead 14 13 27 45 40 34 16 25 37 38 35 56

Forecast 6m ahead 15 16 30 49 45 39 19 29 40 39 37 57

Random-Walk

Fitted 16 5 14 25 17 22 22 12 22 30 21 46

Forecast 1m ahead 15 5 16 28 21 25 24 16 22 33 28 51

Forecast 2m ahead 15 6 17 31 26 28 26 19 22 34 32 53

Forecast 3m ahead 14 7 19 34 30 31 29 23 24 36 36 56

Forecast 4m ahead 14 8 20 37 34 34 33 28 26 38 39 58

Forecast 5m ahead 13 9 21 40 37 37 36 33 28 39 41 60

Forecast 6m ahead 13 10 23 42 40 40 40 38 31 41 45 63

The table shows the s-step ahead prediction RMSEs in basis points for the joint model and the
Random Walk model.

Table 1.3. Back-testing the joint model
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Ok, the backtesting exercise is completed! More can naturally be done, but this is left to the reader, should

he/she have the urge to go more into details at this stage. It is also left to the reader to evaluate the

outcomes shown above, and to reach a conclusion on whether the model is useful for any practical purposes

- apart from illustrative ones.

With this out of the way, let’s now see what kind of forward looking return distributions the model can

generate. Assuming that we are working with continuously compounded yields, which we are, the holding

period return on a τ -maturity bond over the period from, t to t+ j is rτt,t+j = pτ−jt+j − pτt , where p is the log

bond price. The intuition here is that we buy a bond at time t with maturity τ , (pτt ), and sell it j periods

later, at time t+ j, where the bond is j periods closer to redemption, its maturity is therefore τ − j. Since

pτt = −τ · yτt , we can rewrite the return in terms of yields as: rτt,t+j = τ · yτt − (τ − j) · yτ−jt+j .

As an example we will use our model to simulate return distributions for the 12, 60, and 120 months

segments of the curve, using the last observation in our data sample as a starting point. With this

application in mind, it is clear that we cannot use the model directly. A bit of adjustment is needed

since the empirical factor loadings only are available at the maturities, at which data are observed, i.e. for

maturities {3, 12, 24, 60, 84, 120}months, and since we also need yield observations at maturities {0, 48, 108}

months to calculate the desired returns. We therefore need somehow to enlarge our loading matrix such

that it also comprises loadings for these additional maturity points. We will see later on that this is an

easy operation, if we have a parametric description of the loading matrix (such as e.g. in the Nelson-Siegel

model) - however for now, we have to come up with a solution applicable to the empirical problem at hand.

And, that is simply to inter-/extra-polate:

It is probably a good idea to check visually whether the expanded loading matrix is ok. The expanded

loadings are shown as blue lines while the original observations are indicated using red stars. It looks good,

so it can be concluded that the chosen expansions-methodology did a good job. We can now proceed with

the generation of yield simulations and return calculations. The above figure shows the simulated return

OIS US

1y 5y 10y 1y 5y 10y

Mean -0.35 -3.18 -6.13 2.13 -0.24 -2.66

Std. 0 2.27 5.7 0 2.92 6.46

The table shows distribution statistics for the simulated return distributions for the 5-year and
10-year segments of the curve.

Table 1.4. Factor correlations

distributions for the 5 and 10 year maturity points. I have not shown the plots of the 1 year maturity

points - why not? To illustrate the distributional properties of the simulated returns, the red-lines in the

plots show superimposed normal distributions. These distributions fit the returns quite well, as expected,

since the estimated model for the yields relies on the normal distribution. We will see later on how we can
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The figure shows the model yields for the 3-months and 10-year segments of the curve compared
to the corresponding observed yield curve segments.

Fig. 1.10. Model and observed yields

escape the world of normality and how distributions can be generated that match assumptions about the

expected future trajectory of the economy.

The above example illustrates that the current low yield environment and a model that embeds mean-

reversion to historically observed yield levels will predict negative mean-returns for both the US and the

euro area markets.

1.4 Exercises

The empirical exercises should be solved using the US yield curve data that accompany these lecture notes.

1. Construct an empirical model for the OIS and US data where the underlying yield curve factors are

uncorrelated.

2. What is the interpretation of the derived yield curve factors? (use either the ones derived in the text

or the ones emerging from solving E.0.a)

3. The joint model for the OIS and US yield curve segments (shown in the text ) does not fit so well the

long end of the US yield curve. Find out why, and what can be done to improve the fit?

4. Investigate the properties of the simulated yield distributions. Discuss whether the projected trajectories

make sense?
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The figure shows empirical return distributions evaluated again the normal distribution for the
5-year and 10-year segments of the curve.

Fig. 1.11. Yield curve data

1.5 MATLAB code

filename: Empirical Investigation of Observed Yields.m

1 %% Empirical exploration of yield curve data

2 %

3 clear all; % clear all variables

4 close all; % close all figures

5 clc; % clear command window

6 load(’Data_TSM_Course_2018.mat’);

7

8 start_ = datenum(’31-Jan -1999 ’); % defines the start date of the data samples.

9 % can be changed to test whether the results

10 % below are robust to other starting points.

11

12 indx_s = find(US_data.date==start_ ,1,’first ’);

13 indx_tau = [1 2 3 6 8 11]; % selected maturities

14 tau = [3 12 24 60 84 120] ’; % defines the maturities

15

16 US = US_data(indx_s:end ,:);

17 DE = DE_data(indx_s:end ,:);

18 OIS = OIS_data(indx_s:end ,:);

19

20 Y_US = table2array(US(:,indx_tau +1));

21 Y_DE = table2array(DE(:,indx_tau +1)); % contains the yield curve
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22 Y_OIS = table2array(OIS(:,indx_tau +1)); % observations nObs -by -nTau

23 [nObs ,nTau] = size(Y_US); % number of time series observations and

24 % number of maturities.

25

26 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

27 subplot (3,1,1), plot( US.date , Y_US )

28 date_ticks = datenum (1999:3:2020 ,1 ,1);

29 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

30 datetick(’x’,’mmm -yy’,’keepticks ’),

31 set(gca , ’FontSize ’, 20), title(’US yield data’)

32

33 subplot (3,1,2), plot(DE.date ,Y_DE), title(’Germany yield data’),

34 date_ticks = datenum (1999:3:2020 ,1 ,1);

35 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

36 datetick(’x’,’mmm -yy’,’keepticks ’),

37 set(gca , ’FontSize ’, 20)

38

39 subplot (3,1,3), plot(OIS.date ,Y_OIS), title(’Euro area OIS data’),

40 date_ticks = datenum (1999:3:2020 ,1 ,1);

41 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

42 datetick(’x’,’mmm -yy’,’keepticks ’),

43 set(gca , ’FontSize ’, 20), title(’Euro area’)

44 legend(US.Properties.VariableNames {1,indx_tau +1} ,...

45 ’Location ’,’southwest ’)

46 %print -depsc Empirical_YieldCurves_US_DE_EA

47

48 %% Cross sectional plots

49 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

50 plot(tau ,[mean(Y_DE)’ median(Y_DE)’ min(Y_DE)’ max(Y_DE)’ ], ...

51 ’o-’,’LineWidth ’ ,2), ...

52 xticks(tau), grid , ’on’

53 xticklabels(DE.Properties.VariableNames (1,indx_tau +1) ’), ...

54 ylabel(’Pct’), legend(’Mean’, ’Median ’, ’Min’, ...

55 ’Max’, ’Location ’,’southWest ’)

56 set(gca , ’FontSize ’, 20)

57 print -depsc AverageYieldsDE

58

59 diff_S = Y_DE(:,end)-Y_DE (:,1); % difference between the 10y and

60 % 3m yields (a measure for the slope)

61

62 [~, indxS_med] = min(abs(diff_S -median(diff_S))); % finds the index of

63 [~, indxS_min] = min(abs(diff_S -min(diff_S))); % the curve having the

64 [~, indxS_max] = min(abs(diff_S -max(diff_S))); % median , min , and max

65 % slope in the sample

66

67 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

68 plot(tau ,[Y_DE(indxS_med ,:)’ Y_DE(indxS_min ,:) ’...

69 Y_DE(indxS_max ,:) ’],’o-’, ’LineWidth ’,2 ), ...

70 %title(’Generic Slope -Based Shapes of the Yield Curve - Germany ’), ...

71 legend( datestr(DE.date(indxS_med ,1)), datestr(DE.date(indxS_min ,1)), ...

72 datestr(DE.date(indxS_max ,1)), ’Location ’, ’SouthEast ’ ), ...

73 xticks(tau), xticklabels(DE.Properties.VariableNames (1,indx_tau +1) ’), ...

74 ylabel(’Pct’), grid , ’on’

75 set(gca , ’FontSize ’, 20)
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76 print -depsc GenericYieldCurveShapesDE

77

78

79 %% Correlation analysis

80 subData = table(DE.m3, DE.y5, DE.y10 , US.m3, US.y5, US.y10);

81 subData.Properties.VariableNames = { ’DEm3’, ’DEy5’, ’DEy10’, ...

82 ’USm3’, ’USy5’, ’USy10’ };

83 corrplot(subData ,’type’,’Pearson ’,’testR’,’on’,’alpha’ ,0.01)

84 %print -depsc YieldCorrPlot

85

86 %%

87 rng (42+42+42); % fixing the starting point for the random number generator

88 % to ensure replicability

89 nHist = 12; % number of historical observations to inlude in the plot

90 nSim = 42; % number of periods to be simulated

91 VAR_y = varm(nTau , 1); % sets up a VAR1 model: 11 variables and 1 lag

92 est_DE = estimate(VAR_y , Y_DE); % estimate VAR1 model on all obs.

93 sim_DE = simulate(est_DE , nSim , ’Y0’, Y_DE(end ,:)); % simulate the model

94 % star at last obs

95 simDates = [ DE.date(end -11:end ,1); ...

96 DE.date(end ,1) +(31:31: nSim *31)’ ];

97 % concatenating the dates for the last 12 data observations

98 % with the dates spanning the forecasts

99 data2plot = [ Y_DE(end -nHist +1:end ,:); sim_DE ]; % hist. + sim. data

100

101 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

102 plot(simDates , data2plot , ’--’, ’LineWidth ’ ,2), ...

103 hold on, grid , ’on’

104 plot(simDates (1:nHist ,1), Y_DE(end -nHist +1:end ,:), ’-’, ...

105 ’LineWidth ’ ,2)

106 %title(’Forecasting German Yields the Incorrect way ’), ...

107 set(gca , ’FontSize ’, 20)

108 datetick(’x’,’mmm -yy’)

109 print -depsc WrongProjections

110

111 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

112 subplot (3,1,1), plot(tau ,sim_DE (17,:),’o-’), ...

113 ylim([-2 0]), grid ,’on’, ...

114 title(datestr(simDates (17+ nHist),’mmm -yy’))

115 xticks(tau), xticklabels ({tau}),

116 set(gca , ’FontSize ’, 20)

117 subplot (3,1,2), plot(tau ,sim_DE (36,:),’o-’), ...

118 ylim ([ -1.0 0.0]) , grid ,’on’, ...

119 title(datestr(simDates (36+ nHist),’mmm -yy’))

120 xticks(tau), xticklabels ({tau}),

121 set(gca , ’FontSize ’, 20)

122 subplot (3,1,3), plot(tau ,sim_DE (42,:),’o-’), ...

123 ylim ([ -2.0 -0.5]), grid ,’on’, ...

124 title(datestr(simDates (42+ nHist),’mmm -yy’))

125 xticks(tau), xticklabels ({tau})

126 set(gca , ’FontSize ’, 20)

127 print -depsc FunnySimYields

128

129
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130 %% A first look at factor models

131 %

132 [G_US , F_US , eig_US] = pca(Y_US); % run factor analysis on US data

133 [G_OIS , F_OIS , eig_OIS] = pca(Y_OIS); % run factor analysis on US data

134

135 [ cumsum(eig_US ./sum(eig_US)) cumsum(eig_OIS ./sum(eig_OIS)) ]

136

137 nF = 2;

138 Spread = Y_US -Y_OIS; % the pure spread in percentage

139 [G_Sprd , F_Sprd , eig_Sprd] = pca(Spread); % run factor analysis on US data

140

141 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

142 subplot (3,1,1), plot(tau ,G_US (:,1:nF),’o-’, ...

143 ’LineWidth ’ ,2), ylim([-1 1]), title(’US loading structure ’),

144 xticks(tau),xticklabels(US.Properties.VariableNames (1,indx_tau +1) ’),

145 ylabel(’Value ’), grid , ’on’, set(gca , ’FontSize ’, 20)

146 subplot (3,1,2), plot(tau ,G_OIS (:,1:nF),’o-’, ...

147 ’LineWidth ’ ,2), ylim([-1 1]), title(’OIS loading structure ’),

148 xticks(tau), xticklabels(OIS.Properties.VariableNames (1,indx_tau +1) ’),

149 ylabel(’Value ’), grid , ’on’, set(gca , ’FontSize ’, 20)

150 subplot (3,1,3), plot(tau ,G_Sprd (:,1:nF),’o-’, ...

151 ’LineWidth ’ ,2), ylim([-1 1]), title(’Spread loading structure ’),

152 xticks(tau), xticklabels(OIS.Properties.VariableNames (1,indx_tau +1) ’),

153 ylabel(’Value ’), grid , ’on’, set(gca , ’FontSize ’, 20)

154 print -depsc EmpiricalLoadingStructures

155

156 %% Joint model for OIS and US yields

157 %

158 Y2 = [ Y_OIS Y_US ]; % collecting the relevant yield segments

159 G_mdl = [ G_OIS (:,1:nF) zeros(nTau ,nF); % loading structure joint model

160 G_OIS (:,1:nF) G_Sprd (:,1:nF)] ;

161 F_mdl = G_mdl\Y2 ’;

162 Y2_hat = (G_mdl*F_mdl) ’; % fitted yield curves

163 err = Y2-Y2_hat; % fitting errors

164

165 RMSE_bps = 100*( mean(err .^2)).^(1/2); % RMSE in basis points

166

167 Tab_rmse = array2table(round(RMSE_bps)); % just for the display of output

168 A = {OIS.Properties.VariableNames {1,indx_tau +1}};

169 for (j=1: nTau)

170 Tab_rmse.Properties.VariableNames (1,j) = strcat ({’OIS’},A{1,j});

171 Tab_rmse.Properties.VariableNames (1,j+nTau) = strcat ({’US’},A{1,j});

172 end

173 disp(Tab_rmse)

174 disp(round([ min(RMSE_bps) max(RMSE_bps) ]))

175 %% Comparing observed and fitted yields

176 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

177 subplot (2,2,1), plot(OIS.date ,[Y2(:,1) Y2_hat (:,1)], ’LineWidth ’ ,2), ...

178 set(gca , ’FontSize ’, 20)

179 title(Tab_rmse.Properties.VariableNames (1,1)), ...

180 datetick(’x’,’yyyy’),

181 legend(’Obs’,’Fitted ’,’Location ’,’SouthWest ’)

182

183 subplot (2,2,2), plot(OIS.date ,[Y2(:,6) Y2_hat (:,6)], ’LineWidth ’ ,2), ...



20 1 Empirical analysis of term structure data

184 set(gca , ’FontSize ’, 20)

185 title(Tab_rmse.Properties.VariableNames (1,6)), ...

186 datetick(’x’,’yyyy’),

187 legend(’Obs’,’Fitted ’,’Location ’,’SouthWest ’)

188

189 subplot (2,2,3), plot(US.date ,[Y2(:,7) Y2_hat (:,7)], ’LineWidth ’ ,2), ...

190 set(gca , ’FontSize ’, 20)

191 title(Tab_rmse.Properties.VariableNames (1,7)), ...

192 datetick(’x’,’yyyy’),

193 legend(’Obs’,’Fitted ’,’Location ’,’SouthWest ’)

194

195 subplot (2,2,4), plot(US.date ,[Y2(:,12) Y2_hat (:,12)], ’LineWidth ’ ,2), ...

196 set(gca , ’FontSize ’, 20)

197 title(Tab_rmse.Properties.VariableNames (1 ,12)), ...

198 datetick(’x’,’yyyy’),

199 legend(’Obs’,’Fitted ’,’Location ’,’SouthWest ’)

200 print -depsc EvaluatingJointModel

201

202

203 %% Adding dynamics to the model

204 %

205 maxLags = 6;

206 aic_bic = zeros(maxLags ,2);

207 for ( j=1: maxLags )

208 Mdl_ = varm(nF*2,j);

209 Mdl_est = estimate(Mdl_ ,F_mdl ’);

210 Info_ = summarize(Mdl_est);

211 aic_bic(j,:) = [ Info_.AIC Info_.BIC ];

212 end

213 disp(’Optimal lag -order according to:’)

214 disp(’ AIC BIC ’)

215 disp( [find(min(aic_bic (:,1))== aic_bic (:,1)) ...

216 find(min(aic_bic (:,2))== aic_bic (:,2))])

217

218 Mdl_dynamics = varm(nF*2,1);

219 Est_dynamics = estimate(Mdl_dynamics , F_mdl ’);

220 sort(real(eig(Est_dynamics.AR{:,:})))

221

222 end_ = datenum(’31-May -2013’); % end -date of the est data sample

223 indx_e = find(OIS_data.date==end_ ,1,’first ’) -1;

224 horizon_ = 6; % projection horizon

225 nCast = nObs -indx_e -horizon_; % number of times to re-estimate

226 err_mdl = NaN(horizon_+1,nTau*2,nCast); % container for the output

227 err_rw = NaN(horizon_+1,nTau*2,nCast); % container for the random -walk

228 Mdl_cast = varm(nF*2,1);

229 figure

230 for ( j=1: nCast )

231 % estimate on expanding data window

232 est_tmp = estimate(Mdl_cast , F_mdl (:,1: indx_e+j) ’);

233 % forecast VAR model

234 F_cast = forecast(est_tmp ,horizon_ ,F_mdl (:,1: indx_e+j)’);

235 % forecast random -walk

236 F_rw = repmat(F_mdl(:,indx_e+j-1) ’,horizon_ +1,1);

237 Y_obs = Y2(indx_e+j:indx_e+j+horizon_ ,:);
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238 F_cast = [ F_mdl(:,indx_e+j) ’; F_cast ];

239 Y_cast = (G_mdl*F_cast ’) ’; % convert forecasted factors into yields

240 Y_rw = (G_mdl*F_rw ’) ’; % convert random projections into yields

241 err_mdl(:,:,j) = (Y_obs -Y_cast)*100;

242 err_rw(:,:,j) = (Y_obs -Y_rw)*100;

243 end

244 tab_Fcast_mdl_rmse = array2table( round( (mean(err_mdl .^2 ,3)).^(1/2)) );

245 tab_Fcast_mdl_rmse.Properties.VariableNames = Tab_rmse.Properties.VariableNames;

246 tab_Fcast_mdl_rmse.Properties.RowNames = {’Fitted ’, ’Forecast 1m ahead ’, ...

247 ’Forecast 2m ahead ’, ’Forecast 3m ahead’, ...

248 ’Forecast 4m ahead ’, ’Forecast 5m ahead’, ...

249 ’Forecast 6m ahead ’};

250

251 tab_Fcast_rw_rmse = array2table( round( (mean(err_rw .^2,3)).^(1/2)) );

252 tab_Fcast_rw_rmse.Properties.VariableNames = tab_Fcast_mdl_rmse.Properties.VariableNames;

253 tab_Fcast_rw_rmse.Properties.RowNames = tab_Fcast_mdl_rmse.Properties.RowNames;

254 disp(tab_Fcast_mdl_rmse)

255 disp(tab_Fcast_rw_rmse)

256

257 %% Creating the expanded loading matrix

258 %

259 tau_new = sort([tau ;[0;48;108]]);

260 nTau_new = length(tau_new);

261 % inter - and extra -polation of the OIS loadings

262 G_ois_ext = interp1(tau ,G_mdl (1:nTau ,1:2),tau_new ,’pchip ’);

263 % inter - and extra -polation of the Spread loadings

264 G_ois_Sprd = interp1(tau ,G_mdl(nTau +1:end ,3:4),tau_new ,’pchip’);

265 % expanded loading matrix

266 G_sim = [ G_ois_ext zeros(nTau_new ,2); G_ois_ext G_ois_Sprd ];

267

268 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

269 subplot (2,1,1), plot(tau_new , G_sim (1: nTau_new ,1:2) ,’b*-’, ...

270 ’LineWidth ’ ,2)

271 hold on, ylim([-1 1])

272 subplot (2,1,1), plot(tau , G_mdl (1:nTau ,1:2),’r*’),

273 title(’Expanded loadings: OIS’)

274 set(gca , ’FontSize ’, 20), xticks(tau_new), xticklabels ({ tau_new })

275 grid , ’on’

276 subplot (2,1,2), plot(tau_new , G_sim(nTau_new +1:end ,3:4) ,’b*-’, ...

277 ’LineWidth ’ ,2)

278 hold on, ylim([-1 1])

279 subplot (2,1,2), plot(tau , G_mdl(nTau +1:end ,3:4) ,’r*’),

280 title(’Expanded loadings: Spread ’)

281 set(gca , ’FontSize ’, 20), xticks(tau_new), xticklabels ({ tau_new })

282 grid , ’on’

283 print -depsc ExpandedLoadingMatrix

284

285 %% Calculates return distributions

286 % defines the end -date of the first data sample

287 end_ = datenum(’30-Apr -2018’);

288 indx_e = find(OIS_data.date==end_ ,1,’first’);

289 horizon_ = 12; % simulation horizon

290 nSim = 2e4; % number of simulation paths

291 nAssets = length(tau_new)-length(tau); % number of points on the curve
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292 % for which returns are generated

293 Sim_Ret = NaN(nSim , nAssets); % container for the simulated returns

294 Mdl_ = varm(nF*2,1);

295 % estimate the VAR model on the selected data

296 est_Mdl = estimate(Mdl_ , F_mdl (:,1: indx_e)’);

297 Y0 = repmat(F_mdl(:,indx_e)’,nSim ,1);

298 F_sim1 = repmat(F_mdl(:,indx_e) ’,1,1,nSim);

299 % Simulated paths for the factors

300 F_sim2 = simulate(est_Mdl , horizon_ , ’Y0’, Y0, ’NumPaths ’, nSim);

301 % combining obs and simulated data

302 F_sim3 = cat(1,F_sim1 ,F_sim2);

303 % transposing first two dimensions

304 F_sim = permute(F_sim3 ,[2 1 3]);

305 % container for simulated yields

306 Y_sim = NaN(2* nTau_new ,horizon_+1,nSim);% dim: Tau x horizon x sim_path

307 % container for the simulated annual returns

308 R_sim = NaN(nSim ,nAssets *2);

309 e1 = [3;6;9;12;15;18]; % indicator for relevant maturity points

310 e2 = [1;5;8;10;14;17]; % at time t, and t+1

311 tau_ret = [tau_new;tau_new ]./12;

312

313 for ( j=1: nSim ) % calculating returns

314 Y_sim(:,:,j) = G_sim*squeeze(F_sim(:,:,j));

315 R_sim(j,:) = (tau_ret(e1 ,1).* squeeze(Y_sim(e1 ,1,j)) - ...

316 tau_ret(e2 ,1).* squeeze(Y_sim(e2,horizon_+1,j))) ’;

317 end

318 ret_Tab = array2table ([ round(mean(R_sim).*100) ./100; ...

319 round(std(R_sim)*100) ./100 ]); % organising results

320 ret_Tab.Properties.VariableNames = ...

321 Tab_rmse.Properties.VariableNames (1 ,(2:2:12));

322 ret_Tab.Properties.RowNames = [{’Mean’};{’Std.’}];

323 disp(’Summary of the simulated return distributions ’)

324 disp(ret_Tab)

325

326 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

327 subplot (2,2,1), histfit(R_sim (:,2) ,50,’Normal ’), ...

328 set(gca , ’FontSize ’, 20), title(ret_Tab.Properties.VariableNames (2))

329 subplot (2,2,2), histfit(R_sim (:,3) ,50,’Normal ’), ...

330 set(gca , ’FontSize ’, 20), title(ret_Tab.Properties.VariableNames (3))

331 subplot (2,2,3), histfit(R_sim (:,5) ,50,’Normal ’), ...

332 set(gca , ’FontSize ’, 20), title(ret_Tab.Properties.VariableNames (5))

333 subplot (2,2,4), histfit(R_sim (:,6) ,50,’Normal ’), ...

334 set(gca , ’FontSize ’, 20), title(ret_Tab.Properties.VariableNames (6))

335 print -depsc ReturnDistributions
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The P and Q measures

2.1 Introduction

It is impossible to escape a treatment of the P and Q measures. Even if we choose only to rely on models

that do not impose arbitrage restrictions, such as e.g. the Nelson-Siegel family (among others, Nelson and

Siegel (1987), Diebold and Li (2006)), and Diebold and Rudebusch (2013)) we need as a minimum to

appreciate what we are missing (and gaining), such that our modelling choice is made in full consciousness.

This said, there is no doubt that any well-trained financial mathematician will remain unimpressed by my

treatment here, and that she will find it to be completely lacking mathematical rigour. I am alright with

that assessment. My goal here is modest. I only aim to bring into sharper focus the elements that are

necessary for gaining an intuitive and practical understanding of the topic. In my opinion, this is sufficient

for “blue-collar” yield-curve implementation work, i.e. the work that ensures the correct implementation

of existing models in the context of financial decision support frameworks.1

2.2 Switching between measures

One of the central principles of financial theory is that asset prices (of equities, bonds, business projects,

and so on) can be found as the sum of the discounted expected future cashflow stream, where the discount

rate is set to match the riskiness of the cashflows being discounted. The risk adjustment is done by adding

an appropriate risk premia to the discount rate, i.e. the discounting is done using 1 + rt + θ, where rt

is the risk-free rate and θ is the market-determined equilibrium risk-premium, scaled by the risk of the

cashflows in question. Another key insight is that financial option pricing does not fit immediately into

this framework.2 The main reason for this is that these assets have asymmetric pay-off schedules, and our

traditional pricing tool-kits can only risk-adjust assets that have symmetric pay-off distributions.3

1 In-depth treatments of the topics touched upon in this section can be found in e.g. Karatzas and Shreve (1996)
and Mikosch (1998).

2 You may wonder why I am bringing financial option pricing into play here, when the focus of attention is purely
on fixed income pricing and yield curve modelling. But, please bear with me, I hope it will become clear.

3 Think of how you would find the appropriately risk-adjusted discount rate, using the CAPM or APT, for pricing
a call-option on the SP500 index. To determine the β of the call option in the CAPM world, we would need the
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To solve this dilemma, Black, Scholes, and Merton, came up with a clever scheme where the cashflows,

as opposed to the discount rate, undergo a risk adjustment. This adjustment is achieved by weighting

the state-contingent cashflows by a new set of probabilities, drawn from a new probability distribution,

such that the expected value of the cashflows can be discounted using the risk free rate (term structure).

Since the risk free rate is used for discounting, the distribution and the accompanying probability measure,

can be called risk neutral. This probability measure is also referred to as the pricing measure, because

observed/theoretical prices are obtained using the adjusted probability distribution. After all, the correct

pricing of financial options was the primary motivation behind the ideas developed by Black, Scholes, and

Merton, so pricing measure seems like a very appropriate name. In the financial option pricing literature,

as well as in the term structure literature, it has become common practice to associate the risk-neutral

pricing measure with the letter Q, and the historical/empirical measure by the letter P.

The idea of adjusting the size of the cashflows to reflect the euro amount a risk averse investor would

accept, instead of taking on a risky bet, is also known from introductory investment science text books, as

the “certain-equivalent cashflow method”. Often tucked away in an appendix, this method is presented as a

way to determine a reference value for new products, or the premium companies should offer to entice new

investors and make them participate in new equity or bond offerings. So, one way to see the Q-measure is

as an equilibrium solution to the certain-equivalent cashflow adjustment process: a Q distribution assigns

risk-adjusted probabilities to each possible cashflow outcome-combination for the assets that exist in the

economy, such that all assets are priced correctly. This means that any asset that is priced in the economy,

can be written in the following way:

Pt = e−rt · EQ
t [Pt+1] = e−rt

∫
S

ct+1(s+ 1) · fQt (s+ 1)ds(t+ 1), (2.1)

where P is the price, r is the risk free rate, and c(s) is the cashflow in the possible (continuous)

states=s, . . . , S of the world, e.g. ct ∼ N(µ, σ2), and fQ gives the accompanying (pricing) probability

density function. Since we are dealing with risk-free bonds, it is also known that P0 = 1, i.e. that all bonds

repay their principal at the maturity date.

Since risk averse investor pay extra attention to outcomes of the world that they see as being

undesirable (risky), the Q-distribution is effectively a shifted/skewed version of the P-distribution, where

more probability mass is allocated to negative states of the world. We can write the relationship between

the distributions in the following way:

fQt (st+1) = fPt (st+1) · Rt(st+1), (2.2)

covariance between the call-option’s return (pay-offs) and the return on the market portfolio: how do we calculate
the covariance between a variable that has a pay-off of the form max(0, S − X) (the option) and the market
portfolio that can assumed to be normally distributed? Pursuing this question is not necessarily a meaningful
endeavour.
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where R is the risk-adjustment function that financial market participants agree on, and which therefore

becomes embedded in observed prices.4

The more pessimistic (risk averse) the financial market participants are, at a given point in time, the

more attention (weight) is given to bad states of the world. But, what are these bad, or undesirable,

outcomes, that demand a risk premium? The general answer is: states where the prices turn out to be

low. For equities we would therefore expect the mean of the Q distribution to be lower than that of the P

distribution. Conversely, if we look at fixed income markets, and our focus is on the yield curve, we would

expect the mean of the Q distribution to be higher than that of the P distribution, given the inverse relation

ship between bond prices and yields. This type of reasoning is of course only valid, when the risk premium

is positive. If investors, for example, regard government bonds as a safe-heaven asset, then they are willing

to pay a premium to acquire such securities, and the risk premium will, consequently, turn negative.

Participants in fixed-income markets market will require compensations for risk factors that may lead

to yield increases. And, the higher the risk that yields increase, the higher the premium. So, if we first

consider the shape of the term-structure of term premia, it is natural to expect that it is upward sloping in

the maturity dimension: The higher the duration of the bond, the more exposed it is to yield developments,

compared to a bond with lower maturity, over the same holding period. Secondly, it is reasonable to consider

the economic factors that impact the yield curve, and which therefore demand a risk premium. For default-

free bonds, the relevant factors are: the rate of economic growth, and the inflation rate. Uncertainty

surrounding the future evolution of these macro gauges will therefore impact fixed-income term premia.

Investors may also require compensation for holding illiquid bonds, that is bond that may take longer time

to sell than the investor would like to spend on this activity - here the compensation is of course not for

the time spend, but for the adverse price movement that may materialise during the time it takes to find

a buyer for the bond.

Some bonds are also exposed to credit risk. The issuer of the bond may be subjected to a credit-

downgrade, whereby the bonds will trade at lower prices, because they are now priced off a new and higher

yield curve. A down-grade action by rating agencies will typically be expected by market participants

so the down-ward drift in market prices will to some extent happen before the rating agencies’ official

announcement. Rating down-grades are not the only possible credit event. It is also possible that the issuer

defaults. In this case, the bond holders will receive a certain recover percentage, depending on the prices,

at which the available assets can be sold.

In summary, investors require compensations for having exposure to the following systematic risk factors:

• the economic growth rate

• the inflation rate

• credit migration risk

4 The function R is also called the Radon-Nikodym derivative, and it is assumed that R obey the conditions
necessary such that fQ behaves like and can be interpreted as a probability density function.
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• default risk

• liquidity risk

However, in the remaining part of these lecture notes we will deal exclusively with credit and liquidity

risk free bonds.

2.3 A simplified empirical example

Later on we will introduce the commonly used parametrisation of the market price of risk in the context

of yield curve modelling, and go more into detail. For now, a simplified example is used to illustrate the

idea.5 Assume that fixed-income prices are governed by a single factor, the short rate, and that an AR(1)

model gives a good characterisation of the dynamic behaviour of this factor:

rt = cP + αP · rt−1 + σ · et, (2.3)

where r is the annualised three-month short rate, cP is a constant, αP is the autoregressive coefficient, σ

is the volatility of the process, and e ∼ N(0, 1). As is evident, the model is written under the empirical

P-measure, and in passing, it is noticed that this set-up is similar to a discrete-time version of Vasicek

(1977):

∆rt = a · (b− rt−1) + σ · et, (2.4)

m

rt = cP + αP + σ · et (2.5)

with the parameter-mapping, αP = 1−a, and cP = a · b. We will return to the Vasicek (1977) model, below

in Section 2.4.

If we use (2.3) together with (2.1), we can obtain P- and Q-measure price expressions for a τ maturity

bond. First, the recursive structure of (2.1) is used to obtain:

P̃ τt = EP
t

[
e−rt∆t · P̃ τ−1

t+1

]
= EP

t

[
e−rt∆t · e−rt+1∆t · P̃ τ−2

t+2

]
= EP

t

[
e−rt∆t · e−rt+1∆t · e−rt+2∆t · P̃ τ−3

t+3

]
= . . .

and because P̃ 0
T = 1, i.e. the bond repays its principal at maturity, this expression generalises to:

5 For the more traditional exposition using a binomial tree and the portfolio-replication strategy to derive the risk
neutral probabilities, see e.g. Hull (2006), Rebonato (2018), and Luenberger (1998)
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P̃ τt = EP
t

[
e−

∑τ
t rt∆t

]
, (2.6)

and by similarity, we can write:

P τt = EQ
t

[
e−

∑τ
t rt∆t

]
. (2.7)

Using monthly observations for the three-month maturity point on the US risk-free zero-coupon term

structure, covering the period from 1961 to 2018, the following P-measure parameter estimates are

obtained:6

Estimate

cP 0.0763

αP 0.9943

σP 0.5886

Table 2.1. P-measure estimates

Based on (2.3) the comparable P-measure prices, P̃ τt can be calculated, with ∆t = 1/12 (because we

use a monthly observation frequency), and using the parameter estimates in Table 2.1. The good thing

is that with the above set-up, i.e. using the assumption of an AR(1) model for the short rate, there is a

closed-form solutions to the sum of the short rate that enters in equation (2.6):

τ∑
t

rt = rt ·
1− ατ

1− α
+
c · (ατ − α · τ + τ − 1)

(α− 1)
2 (2.8)

Note that the superscript on the parameters are omitted in the above expression because it is valid for any

AR(1) model following the general notation used in equation (2.3).

With this, it is now possible to calculate P-prices and compare them to observed Q-prices, in order to

gauge the size of the risk premium. When we use term structure models in practise, and apply them to

observed market yields, it is easy to forget that yields are a by-product of the trading process: Investors

observe market prices, and the trading commences until prices reach equilibrium, i.e. until all investors

agree that the price is right (even if this moment is only a micro-second). However, we model yields and

not prices, and we are therefore used to thinking about the risk premium in yield-space (and we will

continue doing so below), but, in fact, the risk adjustment enters the stage through the pricing process,

and is therefore originally a pricing concept, as also outlined above. Before reverting to our normal yield-

thinking-mode, it may still be illustrative to see the risk premium as it materialises in price-space - even if

this is only done using example prices.

6 here we are using the data contained in the MATLAB file: Data GSW factors Course 2018.mat.
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On a randomly selected day, zero-coupon bond prices are sampled from the US market, see the row

labelled PQ in Table 2.2. Prices are sampled across the maturity spectrum, covering three- to 120 months.

The next row in the table gives the corresponding P-prices, i.e. the prices that would prevail if equation (2.6)

together with the parameter estimates shown in Table 2.1, were used to price the bonds . The difference

between the two price rows is the risk premium, i.e. the compensation that investors require to hold bonds

at different maturities, here given in price-space.

τ in months 3 12 24 36 48 60 72 84 96 108 120

PQ (Eur) 99.12 96.22 92.29 88.56 84.99 81.53 78.11 74.71 71.35 68.05 64.82

P P (Eur) 99.48 97.76 95.14 92.24 89.17 85.98 82.73 79.47 76.22 73.03 69.90

Price of risk (Eur) 0.36 1.54 2.84 3.69 4.17 4.45 4.62 4.75 4.87 4.98 5.08

Table 2.2. P- and Q prices and the price of risk, on a randomly selected day

Once the price of risk has been calculated in euro terms, we can fiddle with the parameters of the

dynamic evolution of the yield curve factor in (2.3), such that we match the observed market prices as

closely as possible. That is, we aim to find appropriate values for cQ and αQ, from this equation:

rt = cQ + αQ · rt−1 + σ · et, (2.9)

This “appropriate adjustment” constitutes the risk-adjustment in yield space, and we will see later on, how

exactly to map parameters between the two measures - for now this link is (intentionally) left to be vague.

In our example, when the parameter-tinkering is done, we can draw the resulting distributions for the

short rate, see Figure 2.3. Since the Q-distribution falls to the right of the P-distribution, it appears that

a positive risk premium is present in the sampled data.

It is worth emphasising again, that the above is just an example. In general, we would not calibrate

models using more observations than what was used above; in fact, models would typically be fitted to

match a whole panel of yields covering no less than ten years of monthly time series observations, where

each monthly observation would cover several maturity points.

2.4 A generic discrete-time one-factor model

A discrete-time one-factor model is presented here, as a prelude to the multi-factor models that we will

concentrate on for the most part of the remainder of these lecture notes. The model below can be seen as

the discrete-time counterpart of Vasicek (1977).

As above, we assume that the underlying factor driving the yield curve is the short rate, and that the

short rate is governed by a stationary AR(1) process:
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The figure shows an example of the relationship between the P- and Q measure distributions. Only
the mean differs between the two measures in this example.

Fig. 2.1. Example P- and Q-distributions on a randomly selected day

rt = cP + αP · rt−1 + σ · ePt . (2.10)

The bond price is an exponential affine function of the short rate:

P τt = exp (Aτ +Bτ · rt) , (2.11)

and we can therefore write the yield at maturity τ as:

yτt = −1

τ
· log (P τt ) = −Aτ

τ
− Bτ

τ
· rt. (2.12)

In order for bond prices to exclude arbitrage opportunities, a single stochastic discount factor (SDF, also

called the pricing kernel) is assumed to exist, and to price all bonds (and other asset in the economy):

P τt = EP
t

[
Mt+1 · P τ−1

t+1

]
, (2.13)

it is typically assumed that the SDF is parameterised in the following way:
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Mt+1 = exp

(
−rt −

1

2
λ2
t − λtePt+1

)
, (2.14)

and that:

λt = λ0 + λ1rt, (2.15)

Armed with these prerequisites, the fun can begin. By inserting (2.14) and (2.11) into (2.13), we get:

P τt = EP
t

[
exp
(
− rt −

1

2
λ2
t − λtePt+1

)
· exp

(
Aτ−1 +Bτ−1 · rt+1

)]
= EP

t

[
exp
(
− rt −

1

2
λ2
t − λtePt+1 +Aτ−1 +Bτ−1 · rt+1

)]
(2.16)

into which we substitute (2.10):

P τt = EP
t

[
exp
(
− rt −

1

2
λ2
t − λtePt+1 +Aτ−1 +Bτ−1 ·

(
cP + αP · rt + σePt+1

)]
. (2.17)

We now separate terms into two groups, one related to the future, i.e. t+1, where the expectations operator

is needed, and another group, which are know at time t, and where the expectations operator is therefore

not needed:

P τt = EP
t

[
exp
(
− rt −

1

2
λ2
t − λtePt+1 +Aτ−1 +Bτ−1 ·

(
cP + αP · rt + σePt+1

)]
= EP

t

[
exp
(
− rt −

1

2
λ2
t − λtePt+1 +Aτ−1 +Bτ−1 · cP +Bτ−1 · αP · rt +Bτ−1 · σePt+1

)]
= exp

(
− rt −

1

2
λ2
t +Aτ−1 +Bτ−1 · cP +Bτ−1 · αP · rt

)
· EP

t

[
exp
(
− λt · ePt+1 +Bτ−1 · σ · ePt+1

)]
= exp

(
− rt −

1

2
λ2
t +Aτ−1 +Bτ−1 · cP +Bτ−1 · αP · rt

)
· EP

t

[
exp
((
− λt +Bτ−1 · σ

)
· ePt+1

)]
. (2.18)

Since E [exp(aX)] = exp
(

1
2a

2
)

when X ∼ N(0, 1), the expectations part of (2.18) can be written as:

EP
t

[
exp
((
− λt +Bτ−1 · σ

)
· ePt+1

)]
= exp

[
1

2
(−λt +Bτ−1 · σ)

2

]
= exp

[
1

2
B2
τ−1σ

2 −Bτ−1λtσ +
1

2
λ2
t

]
. (2.19)

The derived expression for the expectation part (2.19) can now be reinserted into (2.18)
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P τt = exp
(
− rt −

1

2
λ2
t +Aτ−1 +Bτ−1 · cP +Bτ−1 · αP · rt

+
1

2
B2
τ−1σ

2 −Bτ−1λtσ +
1

2
λ2
t

)
= exp

(
− rt +Aτ−1 +Bτ−1 · cP +Bτ−1 · αP · rt

+
1

2
B2
τ−1σ

2 −Bτ−1λtσ
)
. (2.20)

Recall the expression for the market price of risk, shown in equation (2.15). Insert it in (2.20), and collect

terms related to rt:

P τt = exp
(
− rt +Aτ−1 +Bτ−1 · cP +Bτ−1 · αP · rt +

1

2
B2
τ−1σ

2 −Bτ−1λtσ
)

= exp
(
− rt +Aτ−1 +Bτ−1 · cP +Bτ−1 · αP · rt +

1

2
B2
τ−1σ

2 −Bτ−1σ(λ0 + λ1 · rt)
)

= exp
(
Aτ−1 +Bτ−1 · cP +Bτ−1 · αP · rt +

1

2
B2
τ−1σ

2 −Bτ−1σ(λ0 + λ1 · rt)− rt
)

= exp
(
Aτ−1 +Bτ−1 · cP +

1

2
B2
τ−1σ

2 −Bt−1σλ0

+Bτ−1 · αP · rt −Bτ−1σλ1 · rt − rt
)

= exp
(
Aτ−1 +Bτ−1 · cP −Bt−1σλ0 +

1

2
B2
τ−1σ

2

+
(
Bτ−1 · αP −Bτ−1σλ1 − 1

)
· rt
)

= exp
(
Aτ−1 +Bτ−1

(
cP − σλ0

)
+

1

2
B2
τ−1σ

2

+
[
Bτ−1

(
αP − σλ1

)
− 1
]
· rt
)
. (2.21)

It is obviously unnecessary to include all the intermediate steps in the above derivation, but for completeness,

it is done anyway.

Matching coefficients between equations (2.11) and (2.21), it is seen that:

Aτ = Aτ−1 +Bτ−1

(
cP − σλ0

)
+

1

2
B2
τ−1σ

2

= Aτ−1 +Bτ−1c
Q +

1

2
B2
τ−1σ

2 (2.22)

Bτ = Bτ−1

(
αP − σλ1

)
− 1

= Bτ−1α
Q − 1 (2.23)

First, notice the nice interpretation of the constant and the autoregressive coefficient. When excluding

arbitrage opportunities, by imposing a common risk-adjusted pricing equation for all assets that trade in

the economy, see equation (2.13), the coefficients that determine the dynamics of the yield curve factor, rt,

under the market-pricing measure Q, are being risk adjusted. We see that: cQ = cP−σλ0, and αQ = αP−σλ1,
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appear as the Q-measure parameters, where σ has an interpretation as the amount of risk, and λ0,1 can be

interpreted as the price of risk. Second, the expressions for Aτ and Bτ have iterative structures, such that

Aτ depends on Aτ−1, and Bτ depends on Bτ−1. This structure is no coincidence. It emerges as a natural

consequence of the imposed sequential nature of the above pricing equation. With this structure, it is now

possible to derive closed-form expressions for these parameters.

Starting with the general expression for Bτ in (2.23), gives:

B1 = B0α
Q − 1

B2 = B1α
Q − 1 =

(
B0α

Q − 1
)
αQ − 1 = B0

(
αQ)2 − αQ − 1

B3 = B2α
Q − 1 =

(
B0

(
αQ)2 − αQ − 1

)
αQ − 1 = B0

(
αQ)3 − (αQ)2 − αQ − 1

B4 = B0

(
αQ)4 − (αQ)3 − (αQ)2 − αQ − 1. (2.24)

When the bond matures its price is P 0
t = exp (A0 +B0 · rt) = 1, which implies that A0 = 0 and B0 = 0.

The above expression therefore generalises in the following way:

Bτ = −
τ−1∑
j=0

(
αQ)j

= −
1−

(
αQ)τ

1− αQ (2.25)

where the last line results from the closed-form expression of the summed power-series. Doing the same

exercise for the Aτ term, now that Bτ is known, gives:

Aτ =− cQ

1− αQ ·

[
τ −

1−
(
αQ)τ

1− αQ

]

+
σ2

2 (1− αQ)
2 ·

[
τ +

1−
(
αQ)2τ

1− (αQ)
2 − 2 ·

1−
(
αQ)τ

1− αQ

]
(2.26)

Given the relationship between bond prices and yields in (2.12), the resulting yield equation for the

discrete-time one-factor model can be written as:

yτt = −1

τ
Aτ −

1

τ
Bτrt + σyut

= aτ + bτrt + σyut (2.27)

with
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aτ =
cQ

τ (1− αQ)
·

[
τ −

1−
(
αQ)τ

1− αQ

]

− σ2

2τ (1− αQ)
2 ·

[
τ +

1−
(
αQ)2τ

1− (αQ)
2 − 2 ·

1−
(
αQ)τ

1− αQ

]
(2.28)

bτ =
1−

(
αQ)τ

τ (1− αQ)
. (2.29)

2.4.1 Estimating the short-rate model

Using example data collected from the US market, we can estimate the above derived model. To this end

MATLAB’s state-space toolbox (SSM) is used. Since the model relies on the short rate to be the underlying

factor, that drives the dynamics of the model, it is assumed that the three-month rate can play this role.

And, the model is therefore parameterised such that the yield curve factor is observed.

The model looks like this:

rt︸︷︷︸
1×1

= cP︸︷︷︸
1×1

+ αP︸︷︷︸
1×1

· rt−1︸︷︷︸
1×1

+ σr︸︷︷︸
1×1

et︸︷︷︸
1×1

(2.30)

Yt︸︷︷︸
#τ×1

= aτ︸︷︷︸
#τ×1

+ bτ︸︷︷︸
#τ×1

· rt︸︷︷︸
1×1

+ Σy︸︷︷︸
#τ×#τ

ut︸︷︷︸
#τ×1

, (2.31)

with (2.30) being the state equation, and (2.31) being the observation equation, and with the dimension

of the variables and parameters provided in brackets under the respective entries. Here #τ refers to the

number of maturities, at which the yield curve is observed, at a give point in time. To set up the model

in MATLAB’s SSM toolbox requires a bit of reworking of the model, such that it fits into the required

format. Indeed, it is required that the equations of the model match the following generic set-up:

state equation: Xt = R ·Xt−1 + S · et

observation equation: Yt = T ·Xt + U · ut.

To align the one-factor model with this, the following is done for the state equation: rt

1t


︸ ︷︷ ︸
Xt

=

 αP cP

0 1


︸ ︷︷ ︸

R

·

 rt−1

1t−1


︸ ︷︷ ︸

Xt−1

+

 σr

0


︸ ︷︷ ︸

S

et,

where 1t = 1 is a constant that is equal to 1 for all values of t. The observation equation takes the following

form:
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yt

rt

1t


︸ ︷︷ ︸

Yt

=


bτ aτ

1 0

0 1


︸ ︷︷ ︸

T

·

 rt

1t


︸ ︷︷ ︸
Xt

+


Σy

0

0


︸ ︷︷ ︸

U

ut.

It is well-known that a one-factor model is not flexible enough to capture both the time- and cross sectional

behaviour of yields. In fact, it appears that when one factor models are used in the industry, they are applied

to fit the yield curve at a given point in time, and while the model parameters should be stable over time,

they are in reality not, so models are frequently re-estimated. There is therefore not much hope for the

practical usefulness of the above state-space model, however, as an example, it is useful to carry on.

As a complement to the state-space approach, we can also explore the possibility that the amount

of risk in the economy, is time-varying. With the intention to be as practical as possible, a two-step

estimation approach is pursued to identify the relevant parameters of this model. First, the P dynamics

is estimated, and the resulting parameter estimates are kept constant during the second stage of the

estimation procedure. Second, the Q parameters are estimated (subject to the estimates obtained in step

one). For the sake of clarity, it is recalled that the first step takes care of the time-series dimension of the

data, while the second step is concerned with the cross sectional fit of the model, i.e. with the maturity

dimension.

step 1: rt = cP + αP · rt−1 + σtet (2.32)

σ2
t = ω + κσ2

t−1 + γe2
t (2.33)

Having obtained the parameter estimates: ĉP, α̂P, and the time series of time-varying variances, σ̂2
t ∀ t, the

next step can be completed:

step 2: aτ,t = f
(
ĉP, α̂P, σ̂t, λ0, λ1, τ

)
(2.34)

bτ,t = f
(
α̂P, σ̂t, λ1, τ

)
(2.35)

which amounts to estimating the market price of risk parameters, λ0 and λ1. This can be done by minimising

the sum of the squared errors between model and observed yields.

min{λ0,λ1} =
∑
t

∑
τ

[
Y − Ŷ

]2
=
∑
t

∑
τ

[Y − (aτ + bτ · rt)]2 . (2.36)



2.4 A generic discrete-time one-factor model 35

The results from the above two estimation approaches and model specifications are sketched below.7

The model fits are compared to that of a completely empirically determined one-factor model, where the

factor is the observed short rate.8
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0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t (
pc

t)

The figure shows the estimated time-varying volatility of the short rate factor, obtained from am
AR(1)-GARCH(1,1) model applied to monthly data.

Fig. 2.2. Time-varying volatility of the short rate factor

As anticipated, figure 2.3 shows that all three one-factor models have difficulties in matching the time

series evolution of yields. In fact, the average root mean squared error of the models, across all maturities,

is of a similar magnitude and far too large to qualify these models as applicable to capture both the time-

series and cross-sections behaviour of yields. This observation underscores the usefulness of such one-factor

7 The results are generated using the MATLAB scripts named: “P and Q Measure Vasicek 2 - step approach.m”
and “P and Q Measure Vasicek State Space.m”, that accompany the lecture notes. See the Appendix MATLAB
code, for a print of the code.

8 This empirical model is estimated in MATLAB like this:

1 %% Empirical one -factor short -rate model
2 %
3 F = [ones(nObs ,1) RDNS.yields (:,1)];
4 H = F\RDNS.yields;
5 Y_fit = F*H;
6 RMSE = (mean((RDNS.yields - Y_fit).^2)).^(0.5);

where Y contains the data for the 3-months to 10-year yields. Each column of Y contains the time-series
observations for one maturity. Hence, the first column holds the short rate (the 3-months yield).
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The figure shows the 2-year and 10-year observed and fitted yields. The models described in the
text are used and comprise discrete-time Vasicek models estimated using a state-space approach,
a simple empirical approach, and a two-step procedure allowing for time-varying volatility.

Fig. 2.3. Model fit

models as a means to fit the prevailing term-structure, on a day-to-day or intraday basis, e.g. for pricing

purposes and for detecting rich and cheap bonds at a given time-point. For that purpose, such models are

great.

2.5 Summary

The main objective of this section is to illustrate, in an intuitive a practical way, what we mean, when we

refer to the P and Q measures in the context of yield curve models. This topic can be a stumbling block,

and a source of confusion, when entering into this literature the first time. Sure, we can read, accept, and

replicate what is written in text books and academic papers, but it may be difficult to discern from this a

true sense of understanding. As mentioned in the introduction, my goal here is a modest one. But, I hope,

after all, that the above may help to illustrate, and thereby further the understanding, of the P and Q

measures, and the derived yield curve modelling frameworks.
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(1) The arbitrage constraint amounts to assuming and imposing the existence of a unique pricing equation

on the market being modelled. By pricing all assets that trade on this market, the unique pricing

equation ensures that model prices for all assets are consistent with their exposure to the risk factors

included in the model.

(2) Zero coupon bonds are priced under the Q measure as the discounted value of its terminal payment,

i.e. the payment the bond makes when it matures, using the risk free rate as the discount rate. The

recursive structure of the discounting approach, together with the unique pricing equation, implies that

the loading structure, i.e. the matrix that converts yield curve factors into model yields, also can be

found via a set of recursive equations.

(3) For many models it is possible to sole these recursive equations in closed-form, which makes model

estimation faster.

(4) It is possible to find arbitrage-free counterparts to many of the yields curve models typically used by

practitioners. For example, the Nelson-Siegel model and the Svensson-Soderlind models.

(5) When used appropriately, there is not much difference between arbitrage-free models, and models that

do not impose arbitrage constraints. Still, the arbitrage-free models represent internally consistent

frameworks and gives additional information about the market being modelled, for example, on the

market prices of factor risks.
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2.6 Appendix: MATLAB code

2.6.1 A discrete-time Vasicek model: state-space estimation

filename: P and Q Measure Vasicek State Space.m

1 %% State -space estimation of the Vasicek model

2 % Used in the section: the P and Q measures of the lecture notes

3

4 %% Load yield factors and construct yield curves

5 %

6 load(’Data_GSW_factors_Course_2018.mat’);

7 GSW_ = GSW; % creates an instance of the GSW class

8 GSW_.tau = [3 12:12:120] ’; % vector of maturities

9 GSW_.beta = GSW_factors (: ,2:5); % yield curve factors

10 GSW_.lambda = GSW_factors (: ,6:7); % lambdas

11 GSW_ = GSW_.getYields; % getting yields

12 figure

13 plot(GSW_factors (:,1),GSW_.yields (:,[1 11]));

14 datetick(’x’,’mmm -yy’), title(’US yields ’), legend(’3m’,’10y’)

15

16 RDNS = TSM; % creates an instance of the TSM class

17 RDNS.yields = GSW_.yields; % adds yields to the model

18 RDNS.tau = GSW_.tau; % adds maturities

19 RDNS.biasCorrect = 0;

20 RDNS.DataFreq = 12;

21 RDNS = RDNS.getSRB3; % estimates a 3 factor SRB model

22 figure

23 plot(GSW_factors (:,1), RDNS.beta ’),

24 title(’Extracted yield curve factors ’)

25 datetick(’x’,’mmm -yy’),

26 legend(’Short rate’,’Slope ’,’Curvature ’)

27 figure

28 plot(GSW_factors (:,1) ,[RDNS.beta (1,:)’ RDNS.yields (:,1)]),

29 title(’Model and Observed short rate’),

30 datetick(’x’,’mmm -yy’), legend(’Model ’,’Observed ’)

31 figure

32 plot(GSW_factors (:,1) ,[RDNS.TP(:,11) ACM(:,2)]),

33 title(’10Y Term Premium ’),

34 datetick(’x’,’mmm -yy’), legend(’SRB’,’ACM’)

35

36 [nObs ,nTau] = size(RDNS.yields);

37

38 %% Estimating the parameters of the discrete -time one -factor model

39 % Data are scaled to monthly decimals (percentage annual yields are

40 % converted to monthly decimal rates , because the formulas for the

41 % yield curve loadings are calculated for monthly step -sizes and thus

42 % for monthly rates.

43 %

44 scl_ = 1200;

45 Y = [ RDNS.yields ./scl_ ...

46 RDNS.yields (:,1)./scl_ ...

47 ones(nObs ,1) ];
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48

49 cP = 0.01;

50 aP = 0.95;

51 s = 1.15;

52 L0 = 0;

53 L1 = 0;

54 sY = 1.25.* ones(nTau ,1);

55

56 p0 = [ cP; aP; s; L0; L1; sY ];

57 lb_ = [ 0.00; 0.00; 0; -inf; -inf; zeros(nTau ,1) ];

58 ub_ = [ 1.00; 1.00; 1; inf; inf; 1000.* ones(nTau ,1) ];

59

60 % constraints that ensure that all yield volatilities , ie. the

61 % entries of the variance -covariance matrix in the observation

62 % equation are equal for all maturities included in the analysis.

63 %

64 nP = size(p0 ,1);

65 Aeq = zeros(nTau -1,nP);

66 Aeq(1,[6 7]) = [1 -1];Aeq(2,[7 8]) =[1 -1];Aeq(3,[8 9]) = [1 -1];

67 Aeq(4,[9 10]) = [1 -1];Aeq(5,[10 11]) =[1 -1];Aeq(6,[11 12])= [1 -1];

68 Aeq (7 ,[12 13]) = [1 -1];Aeq(8,[13 14]) =[1 -1];Aeq (9 ,[14 15])= [1 -1];

69 Aeq (10 ,[15 16])= [1 -1];

70 beq = zeros(size(Aeq ,1) ,1);

71

72 Mdl_sr = ssm(@(p) pMap(p, RDNS.tau));

73 options = optimoptions(@fmincon ,’Algorithm ’,’interior -point’ ,...

74 ’MaxIterations ’,1e6, ...

75 ’MaxFunctionEvaluations ’,1e6, ...

76 ’TolFun ’, 1e-6, ’TolX’, 1e-6);

77

78 disp(’... Estimating the model using the SSM module ’)

79 [ EstMdl_sr , pHat , pCov , logl , outFlags ] = ...

80 estimate( Mdl_sr ,Y,p0 ,’Display ’,’iter’,’Aeq’,Aeq ,’beq’,beq ,...

81 ’lb’,lb_ ,’ub’,ub_ ,’univariate ’,true ,’options ’,options )

82

83 x_filter = filter( EstMdl_sr , Y ); % extract filtered state variables

84 sr_filter = x_filter (:,1); % filtered short rate

85

86 cP_ = pHat (1,1);

87 aP_ = pHat (2,1);

88 s_ = pHat (3,1);

89 L0_ = pHat (4,1);

90 L1_ = pHat (5,1);

91 sY_ = pHat (6:end ,1);

92 mP = (cP_/(1-aP_))*scl_;

93

94 a_tau_ = EstMdl_sr.C(1:nTau ,2);

95 b_tau_ = EstMdl_sr.C(1:nTau ,1);

96 Y_fit = (a_tau_ + b_tau_*sr_filter ’) ’;

97

98 RMSE = 100.*( mean((scl_.*Y(: ,1:11)-scl_.* Y_fit).^2)).^(1/2)

99

100 figure

101 plot(GSW_factors (:,1) ,[sr_filter Y(:,12)]),
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102 title(’Yield curve factor ’)

103 datetick(’x’,’mmm -yy’), legend(’obs’,’fit’)

104 figure

105 plot(GSW_factors (:,1) ,[Y_fit (:,1) Y(:,1)]),

106 title(’3M rate’)

107 datetick(’x’,’mmm -yy’), legend(’fit’,’obs’)

108 figure

109 plot(GSW_factors (:,1) ,[Y_fit (:,2) Y(:,2)]),

110 title(’1Y rate’)

111 datetick(’x’,’mmm -yy’), legend(’fit’,’obs’)

112 figure

113 plot(GSW_factors (:,1) ,[Y_fit (:,3) Y(:,3)]),

114 title(’2Y rate’)

115 datetick(’x’,’mmm -yy’), legend(’fit’,’obs’)

116 figure

117 plot(GSW_factors (:,1) ,[Y_fit (:,4) Y(:,4)]),

118 title(’3Y rate’)

119 datetick(’x’,’mmm -yy’), legend(’fit’,’obs’)

120 figure

121 plot(GSW_factors (:,1) ,[Y_fit (:,5) Y(:,5)]),

122 title(’4Y rate’)

123 datetick(’x’,’mmm -yy’), legend(’fit’,’obs’)

124 figure

125 plot(GSW_factors (:,1) ,[Y_fit (:,6) Y(:,6)]),

126 title(’5Y rate’)

127 datetick(’x’,’mmm -yy’), legend(’fit’,’obs’)

128 figure

129 plot(GSW_factors (:,1) ,[Y_fit (:,11) Y(:,11)]),

130 title(’10Y rate’)

131 datetick(’x’,’mmm -yy’), legend(’fit’,’obs’)

132

133 %%

134 function [R,S,T,U,Mean0 ,Cov0 ,StateType] = pMap( p, tau )

135 %

136 % Setting up the matrices necessary to estimate the state -space model

137 %

138 nTau_1 = length(tau);

139 nTau = max(tau);

140

141 cP = p(1,1);

142 aP = p(2,1);

143 s = p(3,1);

144 L0 = p(4,1);

145 L1 = p(5,1);

146 sY = p(6:end ,1);

147

148 cQ = cP - s*L0;

149 aQ = aP - s*L1;

150

151 [ a_tau , b_tau ] = find_a_b(s,cQ ,aQ,tau);

152

153 R = [ aP cP; 0 1 ];

154 S = [ s; 0 ];

155 T = [ b_tau a_tau; 1 0; 0 1 ];
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156 U = [ diag(sY); zeros(2,nTau_1) ];

157

158 % ... other assignments

159 Mean0 = [];

160 Cov0 = [];

161 StateType = [ 0; 1 ];

162 end

163

164 function [a_n , b_n] = find_a_b(s,cQ ,aQ,tau)

165 % determines the loadings and the constant vector using the

166 % recursive equations and closed form expressions.

167 %

168 flagg = 1; % 1-> closed form results , 0->iterative solution

169

170 a_nF = @(a_,n_,c_ ,s_) -c_/(1-a_)*( n_ - (1-a_.^n_)/(1-a_) )...

171 +(s_^2) /(2*((1 -a_)^2)).*(n_ + ...

172 (1-a_.^(2*n_))./(1-a_^2) - 2*(1-a_.^n_)./(1-a_) );

173 b_nF = @(a_,n_) -(1-a_.^n_)./((1 -a_));

174

175 if (flagg ==0)

176 nTau = max(tau(:));

177 ttau = (1:1: nTau) ’;

178 a_t = zeros(nTau ,1);

179 b_t = zeros(nTau ,1);

180 for (j=2: nTau +1)

181 b_t(j,1) = b_t(j-1,1)*aQ - 1;

182 a_t(j,1) = a_t(j-1,1) + b_t(j-1,1)*cQ - 0.5*s^2*( b_t(j-1,1))^2;

183 end

184 a_n = -a_t(tau+1,1)./tau;

185 b_n = -b_t(tau+1,1)./tau;

186 else

187 a_n = -a_nF(aQ,tau ,cQ ,s)./tau;

188 b_n = -b_nF(aQ,tau)./tau;

189 end

190 end
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2.6.2 A discrete-time Vasicek model: two-step estimation procedure

filename: P and Q Measure Vasicek 2 step approach.m

1 %% Two -step estimation procedure for the discrete -time Vasicek model

2 % Used in the section: the P and Q measures of the lecture notes

3

4 %% Load yield factors and construct yield curves

5 %

6 load(’Data_GSW_factors_Course_2018.mat’);

7 GSW_ = GSW; % instance of the GSW class

8 GSW_.tau = [3 12:12:120] ’; % vector of maturities

9 GSW_.beta = GSW_factors (: ,2:5); % yield curve factors

10 GSW_.lambda = GSW_factors (: ,6:7); % lambdas

11 GSW_ = GSW_.getYields; % getting yields

12 figure

13 plot(GSW_factors (:,1),GSW_.yields (:,[1 11]));

14 datetick(’x’,’mmm -yy’), title(’US yields ’), legend(’3m’,’10y’)

15

16 RDNS = TSM; % instance of the TSM class

17 RDNS.yields = GSW_.yields; % adds yields to the model

18 RDNS.tau = GSW_.tau; % adds maturities

19 RDNS.biasCorrect = 0;

20 RDNS.DataFreq = 12;

21 RDNS = RDNS.getSRB3; % est. a 3 factor SRB model

22 figure

23 plot(GSW_factors (:,1), RDNS.beta ’),

24 title(’Extracted yield curve factors ’)

25 datetick(’x’,’mmm -yy’),

26 legend(’Short rate’,’Slope ’,’Curvature ’)

27 figure

28 plot(GSW_factors (:,1) ,[RDNS.beta (1,:)’ RDNS.yields (:,1)]),

29 title(’Model and Observed short rate’)

30 datetick(’x’,’mmm -yy’), legend(’Model ’,’Observed ’)

31 figure

32 plot(GSW_factors (:,1) ,[RDNS.TP(:,11) ACM(:,2)]) ,...

33 title(’10Y Term Premium ’)

34 datetick(’x’,’mmm -yy’), legend(’SRB’,’ACM’)

35

36 [nObs ,nTau] = size(RDNS.yields);

37 %% Time -varying volatility and the Vasicek model

38 % Below we implement a two -step approach to estimating the Vasicek model

39 % with time -varying volatility , as outlined in the lecture notes.

40 %

41 Y = RDNS.yields ./1200; % US Yields in decimal form

42 tau = RDNS.tau; % for maturities 3, 12:12:120 months

43 %

44 % ... Step 1

45 Sr = Y(:,1); % 3-month rate = short rate

46 Mdl_AR_garch = arima(’ARLags ’,1,’Variance ’,garch (1,1), ...

47 ’Distribution ’,’Gaussian ’); % AR(1)-GARCH (1,1) model

48 Est_AR_garch = estimate(Mdl_AR_garch ,Sr); % estimate the model

49 [eps ,s2] = infer(Est_AR_garch ,Sr); % extract cond. variances
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50 cP = Est_AR_garch.Constant;

51 aP = Est_AR_garch.AR{:};

52 s = sqrt(s2);

53

54 %

55 % ... Step 2

56 p0 = [0;0];

57 lb_ = [ -100; -100];

58 ub_ = [ 100; 100];

59 %

60 % minimise the squared residuals defined in the function

61 % Est_Vasicek - see below

62 [pHat ,fval ,flagg ,output ,lamb_ ,G_,H_] = fmincon(@Est_Vasicek ,p0 ,...

63 [],[],[],[],lb_ ,ub_ ,...

64 [],[],Y,s,cP,aP ,tau ,Sr)

65

66 [err2 ,Y_hat ,a_tau ,b_tau] = Est_Vasicek(pHat ,Y,s,cP ,aP,tau ,Sr);

67 Y_hat = 12.* Y_hat;

68 RMSE = 10000.*( mean ((12.*Y-Y_hat).^2)).^(1/2);

69

70 figure

71 plot(GSW_factors (:,1),sqrt(s2))

72 datetick(’x’,’mmm -yy’)

73 ylabel(’\sigma_t ’)

74 % print -depsc P_Q_distribution

75

76 function [err2 ,Y_hat ,a_tau ,b_tau] = Est_Vasicek(p,Y,s,cP,aP ,tau ,Sr)

77 % This function calculates the difference between model and observed

78 % yields that can be used to estimate the parameters $\lambda_0$ and

79 % $\lambda_1$

80 %

81 nObs = size(s,1);

82 nTau = max(tau);

83

84 a_nF = @(a_,n_,c_ ,s_) -c_/(1-a_)*( n_ - (1-a_.^n_)/(1-a_) )...

85 +(s_^2) /(2*((1 -a_)^2)).*(n_ + ...

86 (1-a_ .^(2*n_))./(1-a_^2) - 2*(1-a_.^n_)./(1-a_) );

87 b_nF = @(a_,n_) -(1-a_.^n_)./((1 -a_));

88

89 L0 = p(1);

90 L1 = p(2);

91 cQ = cP - L0.*s;

92 aQ = aP - L1.*s;

93 a_tau = NaN(size(tau ,1),nObs);

94 b_tau = NaN(size(tau ,1),nObs);

95 Y_hat = NaN(nObs ,size(tau ,1));

96 for (j=1: nObs)

97 a_tau(:,j) = -a_nF( aQ(j,1), tau , cQ(j,1), s(j,1) )./tau;

98 b_tau(:,j) = -b_nF( aQ(j,1), tau )./tau;

99 Y_hat(j,:) = (a_tau(:,j) + b_tau(:,j)*Sr(j,1))’;

100 end

101 err2 = sum(sum((Y-Y_hat).^2));

102 end
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The Basic Yield Curve Modelling Set-up

3.1 Introduction

Our staring point is the empirical observation that yields observed across the maturity spectrum are highly

cross-correlated, and that their time series dynamics tend to exhibit some degree of autocorrelation. A good

and practical modelling approach may therefore by to stack yields at different maturities, but observed at

the same point in time, in a vector, and to collect all the vectors into a single panel of yield observations.

The question is now, how do we model such a panel of correlated data points in a parsimonious way, while

ensuring that as much of the information relevant to us is preserved? In coming up with an answer to this

question, we will pursue a route that is purely empirically founded; the treatment of the arbitrage free

pricing set-up will follow in later chapters. Here we will mainly follow the modelling ideas of Litterman

and Scheinkman (1991), Nelson and Siegel (1987), Diebold and Li (2006), and in general, Diebold and

Rudebusch (2013). In terms of estimation techniques, both state-space approaches and two-step OLS will

be covered.

3.2 The factor structure of yields

Let Y be a data set of yield curve observations covering time and maturity dimensions. Figure 3.1 shows

an example of what Y can look like. The shown data are US zero-coupon yields, observed at a monthly

frequency for the period from June 1961 to July 2018, and covering maturities from 3 to 120-months. As

in other parts of the lecture notes, these are the data we will work with.

To illustrate further, Y can be sliced in two dimensions (obviously!): a single slice of Y in the maturity

dimension, Yt, contains yield observations at different maturity points, at the date where the slice is carved

out of the data set; in other words, Yt constitutes a yield curve observed at time t. We can also slice the

data in the date dimension, and then collect the time series observations of a given maturity point on the

yield curve. These two ways of slicing Y are illustrated in Figure 3.2.
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The figure shows the US example data used throughout the lecture notes. Monthly yield data are

observed since 1961 to 2018, for maturities from 3-120 months. These data are from Gurkaynak,

Sack, and Wright (2006) and made available and updated by the Federal Reserve Board.

Fig. 3.1. Yield curve data

Now, if we want to model the observations contained in Y , the natural starting point is to hypothesize,

test, and estimate a time series model for Yt. But, we have already seen empirically in “Part 0: Empirical

Investigation of Observed Yields”, that this may not be the best of ideas because of the strong cross

sectional relationship that exist between yields observed at different maturities. We have also seen that a

more viable strategy is to model a few yield curve factors, and to find out how these yield curve factors

map into observed yields - as described in the papers referred in Section 3.1, and the related large body of

related literature.

In its most general linear form, such an approach can be written as a two-equation dynamic system,

which we typically refer to as a state-space model:1

1 This does not necessary mean that we need to estimate the model using the Kalman filter. If, for example, we
are working with observable yield curve factors, then an OLS estimation approach suffices. On the other hand,
if factors enter non-linearly and are unobservable, then we need to use an appropriate filtering technique such
as e.g. the unscented Kalman filter (see, e.g. Julier and Uhlmann (2004), Julier and Uhlmann (1997), and Wan
and Merwe (2001)).
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Yield curve on 30-Nov-1971

The figure shows the two dimensions of yield curve data. The upper panel displays the time series
dimension, and the lower shown the maturity dimension.

Fig. 3.2. The maturity and time dimension of yield curve data

state equation: Xt︸︷︷︸
#F×1

= k︸︷︷︸
#F×1

+ Φ︸︷︷︸
#F×#F

·Xt−1︸ ︷︷ ︸
#F×1

+ ΣX︸︷︷︸
#F×#F

· et︸︷︷︸
#F×1

observation equation: Yt︸︷︷︸
#τ×1

= a︸︷︷︸
#τ×1

+ b︸︷︷︸
#τ×#F

· Xt︸︷︷︸
#F×1

+ ΣY︸︷︷︸
#τ×#τ

· ut︸︷︷︸
#τ×1

.

where (#F ) is the number of factors, and (#τ) is the number of maturity points modelled.

The state equation governs the dynamic evolution of the yields curve factors, X, where k is a vector of

constants, Φ is a matrix of autoregressive coefficients, ΣX is the cholesky decomposition of the covariance

matrix (i.e. it is a lower triangular matrix of covolatilities), and et is a vector of standard normal innovations,

i.e. et ∼ N(0, 1), so, E [Xt|Xt−1] ∼ N(µX , ΣXΣ
′
X). The observation equation translates the yield curve

factors into yields, Yt, as they are observed in the market place. In the state equation, a is a constant

vector, b is the matrix that maps factor space into yield space, ΣY is a diagonal matrix of maturity specific

yield volatilities, and ut ∼ N(0, 1).

It was shown in “Part 0: Empirical Investigation of Observed Yields” that a principal component analysis

can cast light on the empirical factor structure underlying yields. What is hypothesised above, is addition

that: (a) the factor structure can be parameterised in a parsimonious way (this idea was spearheaded by

Nelson and Siegel (1987)), and that (b) the factors can be modelled by standard time series models e.g. as
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a VAR(1), as originally proposed by Diebold and Li (2006). To test out these ideas, we employ MATLAB’s

state space modelling toolbox (SSM). Using MATLAB’s build in toolboxes generally comes at the cost of

having to conform with a required model set-up and so on. This is of course the same for the SSM module,

although the barrier-of-entry with this toolbox may at first sight seem higher than with other toolboxes.

Still, in my estimation, it is worth the effort (although one also have to forego the fun of implementing the

Kalman-filter from scratch), because the added benefits far outweighs this initial investment of time.

To used the SSM toolbox it is required that the model to be estimated follows this generic set-up:

state equation: Xt = R ·Xt−1 + S · et

observation equation: Yt = T ·Xt + U · ut,

which means that the constants need to be integrated into the R and T matrices. This is done by including

additional state variables that are preconditioned to be constant, and set equal to 1 at each observation

point. Apart from this, it should be relatively straight forward to set up the model. The below set-up

assumes that three factors are included in the model - but it naturally easy to accommodate any number

of factors by appropriately adjusting the dimensions of the parameter matrices.

State equation



X(1)

X(2)

X(3)

1#τ


t

=



Φ1,1 Φ1,2 Φ1,3 k1 0 0 01,#τ−3

Φ2,1 Φ2,2 Φ2,3 0 k2 0 01,#τ−3

Φ3,1 Φ3,2 Φ3,3 0 0 k3 01,#τ−3

0#τ,3 I#τ


·



X(1)

X(2)

X(3)

1#τ


t−1

+



ΣX(1,1) 0 0

ΣX(2,1) ΣX(2,2) 0

ΣX(3,1) ΣX(3,2) ΣX(3,3)

0#τ,1 0#τ,1 0#τ,1


et,

where 1#τ is a constant unit vector of dimension #τ , and I#τ is the identity matrix of dimension (#τ×#τ).

The rest of the dimension assignments follow the same principle.

The observation equation takes the following form:

Observation equation
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y3m

y12m

y24m

...

y120m

1#τ


t

=



b1,3m b2,3m b3,3m a3m 0 0 0 · · · 0

b1,12m b2,12m b3,12m 0 a12m 0 0 · · · 0

b1,24m b2,24m b3,24m 0 0 a24m 0 · · · 0

...
...

...
...

...
...

. . .
... 0

b1,120m b2,120m b3,120m 0 0 0 0 0 a120m

0 0 0 I(#τ×#τ)


·



X(1)

X(2)

X(3)

1#τ


t

+



Σy,(1,1) 0 0 · · · 0

0 Σy,(2,2) 0 · · · 0

0 0
. . . · · · 0

...
...

...
. . .

...

0 0 0 0 Σy,(#τ,#τ)

0#τ,#τ


ut

With the model now adhering to the notation used by MATLAB, it can be implemented and estimated

using the SSM toolbox. This is done in the script included in the Annex part 4.3.1. Two model

implementations are embedded in the code: one allows for the estimation of a fully empirical version

of the model, i.e. where no prior structure is imposed on the constant vector, a, and the loading structure

b in the observation equation; the other constrains a and b to follow the prescription by Nelson and Siegel

(1987) using the parametrisation suggested by Diebold and Li (2006). This means that:

a = 0 (3.1)

bτ =

[
1 1−e(−γ·τ)

γ·τ
1−e(−γ·τ)

γ·τ − e(−γ·τ)

]
. (3.2)

Note that the notation is changed slightly compared to what is traditionally used. We use γ to denote the

time-decay parameter, which is most often denoted by λ is the literature. This is done to avoid notational

confusion, since λ is elsewhere in these lecture notes used to denote the market price of risk.

When running the code shown in Annex part 4.3.1 (in its two guises by adjusting the input in line 52,

choosing either ‘Emp’, for empirical, or ’NS’, for the Nelson-Siegel model) we can compare the loadings and

extracted factors. Since the empirical model is virtually unspecified in its generic form, it is not clear what

to expect in terms of an outcome. In essence, this model is too flexibly specified, since there is nothing

that locks down the scale and sign of the factors, and by the same token, there is noting ensuring that a

reasonable and interpretable structure will emerge for the loadings contained in b. In principle, we have

a linear regression model, y = a + b · x, we only know y, and we try to determine a, b, and x, by using



50 3 The Basic Yield Curve Modelling Set-up

some clever estimation technique (i.e. the Kalman-filter). Clearly, there are many combinations of a+ b · x

that will fulfil the equation. And, we must therefore expect that, depending on the starting values, the

iterative algorithm can converge to a multitude of maxima all providing exactly the same fit to data. If

we would like to have a model that facilitates economic analysis, it is useful to attach a certain meaning

to the factors, and that this meaning remains constant over time, i.e. across the multiple times the model

will be re-estimated, as time progresses. We will look more carefully at this in the next section, for now we

will push ahead, and see what we get when we run the code.

Figure 3.3 shows the loadings that are generated by the two models, and Figure 3.4 shows the extracted

factors. Using these two estimates, which amounts to b and X in the above outlined model-notation,

together with the constant, a, we can assess how well the estimated models fit the observed yields. This

is done by means of the RMSE (root-mean-squared-error) expressed in basis points. Model predictions are

denoted by ŷEmp and ŷNS , respectively, and calculated in the following way:

ŷ = â+ b̂ · X̂. (3.3)

Using the ˆ notation here underscores that estimates are used to produce the model predictions. This is

an obvious fact, and this notation will therefore not be used throughout, unless the context is ambiguous.

Another thing to note is that only the parameter estimates from the observation equation is used at the

moment - but rest assured, we will return to the state equation, and use it extensively, in the section of

the notes that looks at forecasting and scenario generation.
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(a) The empirical model
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(b) The Nelson-Siegel model

Panel (a) shows the loading structure of the empirical model specification, i.e. the parameter
estimates contained in the b-matrix from the observation equation: y = a + b · X. Panel (b)
shows the same for the Nelson-Siegel model. The displayed loading structures provide a graphical
representation of the loadings for the three estimated factors, i.e. the loadings for each factor across
the modelled maturity dimension.

Fig. 3.3. Estimated loadings



3.2 The factor structure of yields 51

While it may not be evident to the naked eye, there is quite some commonality between the loading

structures shown in Figure 3.3. Taking the Nelson-Siegel loadings as the starting point, the first factor

has an equal impact, on all yields, regardless of their maturity: that is, loading 1 equals unity across

the maturity spectrum (see panel (b)). While the empirical model does not generate a constant value

of one across the maturity spectrum for its first loading, the value is approximately constant. In the

language of PCA analysis, where scale and signs of loadings and factors can switch around, this common

feature, i.e. constancy across the maturity spectrum is enough to declare, that the fist factor has a similar

interpretation for both model variants. And, by the virtue of its impact on the yield curve, shifting it

upwards and downwards in a parallel fashion, this first factor can be seen as the duration risk factor. It

is too early to say whether the duration factor is shifting the curve from the short, middle, or long end of

the maturity dimension. To determine this, we need to look at the second factor. As is well-known, in the

Nelson-Siegel model, the second factor constitutes the slope of the yield curve, or rather, the negative slope,

i.e. the short-end yield minus the long-end yield. This is evident from the shape and location of Loading

2 in panel (b). At the short-end of the maturity spectrum, this factor records its maximum impact, and

its impact falls to zero (beyond the maturities shown in Figure 3.3) as the maturity increases, following a

convex trajectory. Thinking e.g. about how the three month yield is recovered from these two first factor

loadings of the Nelson-Siegel model, implies that the first factor is defined as the long-end level of the yield

curve (and it is from here that parallel shifts are induced on the yield curve), and the second factor is the

negative slope:

short rate = loading 1 · Factor 1 + loading 2 · Factor 2

= 1 · Factor 1 + 1 · Factor 2

= 1 · level + 1 · (−level + short rate)

= short rate.

Following this logic, it is established that the Nelson-Siegel model imposes factor interpretations for the

first two factors that are equal to a yield curve level-factor, and to a negative (compared to the traditional

definition) slope factor, respectively. In the above, we have also established that the first factor detected

by the empirical model, is similar in shape to the level factor of the Nelson-Siegel model. The question is

now, whether either of the two remaining loading structures in panel (a) of Figure 3.3 resembles the second

Nelson-Siegel factor loading. It appears that Loading 3 exhibits a convex and increasing pattern, and if

rotated around the x-axis, it compares well to the second Nelson-Siegel factor!

But, why does the empirical model swap the ordering of the factors around? Well, since we haven’t given

the model any information about how we want it to organise it does not know any better, and it orders

the factors basically on the basis of the starting values given to the optimisation routine, and the path

that the routine follows to reach the maximum. This is different when we do a PCA analysis, since most
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econometric packages order the extracted factors/principal components according to their eigenvalues, i.e.

according to the amount of variance that they each explain. And, since PCA analysis in principle underpins

the Nelson-Siegel model, the ordering of the NS-factors follows this principle - by the way, obviously, it

also makes a lot of economic and intuitive sense to order the factors in this way, since it corresponds to

placing the most risky factor first in the hierarchy and the least risky factor last.

Finally, the two remaining factors, factor two from the empirical model and factor three form the

Nelson-Siegel model also match up in terms of patterns, with the weighting across maturities fitting that

of a curvature impact, i.e. having little impact in the short and long ends of the curve and larger impact

in the middle part of the maturity spectrum.

Sorting out the relationship between the empirical and the Nelson-Siegel model specifications by visual

inspection of the loading structure shown in Figure 3.3, as we have done above, has hopefully helped to

further our intuitive understanding of yield curve factor-models. At least, this was the main purpose of

this exercise. In my experience, it is in general helpful to think about yield curve factor models as the

the multiplication of loadings and factors (plus a constant), i.e. y = a + b · X, in visual terms as the

multiplication of the loadings, as e.g. shown in panel (a) of Figure3.3, with the time series of factors, shown

in panel (a) of Figure 3.4. Having such a visual representation in the back of the mind helps to lock down

the entities that enter the model and facilitates an immediate intuitive sense of the economic interpretation

of the factors.

Instead of the somewhat lengthy deliberations above, there is an easier and (perhaps) more natural way

to match up the factor interpretation across the two estimated models. Given that we have obtained the

time series of the yield curve factors for each model, as shown in Figure 3.4, we can simply calculate the

cross-correlations between the series. This is done in Table 3.1. And, luckily, the conclusions we drew above

are confirmed: there is a correlation of 0.99 between factor 1 of the empirical and Nelson-Siegel models, a

correlation of

Emp F1 Emp F2 Emp F3 NS F1 NS F2 NS F3

Emp F1 1.00

Emp F2 0.32 1.00

Emp F2 -0.68 -0.28 1.00

NS F1 0.99 0.23 -0.59 1.00

NS F2 0.19 0.14 0.85 0.08 1.00

NS F3 0.48 0.96 -0.54 0.38 0.38 1.00

The table shows the correlations between the extracted factors from the Empirically founded
(Emp) model and from the Nelson-Siegel (NS) model.

Table 3.1. Factor correlations
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(b) The Nelson-Siegel model

Panel (a) shows the time series evolution of the extracted yield curve factors, i.e. the estimates
contained in the X-matrix from the observation equation: y = a+ b ·X. Panel (b) shows the same
for the Nelson-Siegel model.

Fig. 3.4. Estimated factors

As the final issue in this section, we will have a look at how well the two models fit the data. To fix

ideas, it is observed that the Nelson-Siegel model can be seen as a constrained version of the empirical

model, since the Nelson-Siegel model imposes a certain functional structure on the loadings contained in

the b-matrix. In fact, at first sight, it seems that Nelson and Siegel chose to impose some rather severe

constraints: where the empirical model relies on #τ × 3 = 33 parameters, all to be estimated, the Nelson-

Siegel model uses only one single parameter, namely the time-decay parameter γ, together with functions

of γ and τ . On the other hand, we also know that the Nelson-Siegel model is hugely popular, and one of

the tools often used by central banks asset managers. If the model produced a poor fit to data, it probably

would not be so widely used. So, it is no surprise that the two-parameter functional-forms utilised by

the Nelson-Siegel model do not impose any devastating constraints. This is, of course, because the chosen

functional forms match well the patterns that result from PCA analysis on yields, and that yields in most

markets, and across time, are well captured by these patterns.

Using the US data, Table 3.2 shows the Root Mean Squared Error (RMSE) for both each model across

maturities from three months to 10 years. Both models fit data very well, and they both have very low

average RMSEs. While the empirical model fits slightly better, we see that the cost of the constraints

imposed by the Nelson-Siegel model are very small, at most 1 to 3 basis points. And, these results are

obtained on data covering the period from 1960 to 2018, so this results seems to have general validity, and

it surely not an artefact of a carefully selected data sample.
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τ in months 3 12 24 36 48 60 72 84 96 108 120

Empirical model (bps) 6 13 4 4 6 5 4 2 1 4 6

Nelson-Siegel (bps) 9 14 5 3 5 5 4 3 1 3 6

Difference -3 -1 -1 1 -1 0 0 -1 0 1 0

Model fits are compared for the two estimated versions of the model: the empirical one and the
Nelson-Siegel model. The table shows the root-mean-squared-error (RMSE) for each model. For

each maturity point covered by the data, the RMSE is calculated as

[
mean

(
yτ(i) − ŷjτ(i)

)2]( 1
2
)

,

where yτ(i) and ŷjτ(i) are time series for the i’th maturity point, j ∈ {Emp,NS}.

Table 3.2. RMSE (basis points)

3.3 Rotating the yield curve factors

2 As practitioners we may, at times, be interested in imposing a certain economic meaning on one or more

of the yield curve factors, while still staying within the comforting remit of the Nelson and Siegel (1987) and

Diebold and Li (2006) modelling frameworks. For a given task, we may find that it is convenient to work

directly with the short rate. For example, if yield curve scenarios need to be generated for risk assessment

purposes, where a set of predefined scenarios are defined in terms of the future path of the monetary policy

rate. In this case, it seems reasonable to model the short rate directly, rather than to backward engineer

how the Nelson-Siegel level and slope factors would need to evolve, to match the predefined scenario paths

for the short rate. It could may also be the case that a certain relationship between the short rate, the slope

and some macroeconomic variables, are believed to exist. For example, we may believe that a Taylor-rule

(Taylor (1993)) inspired relationship holds between macroeconomic variables, and that slope is related to

the perceived risk in the fixed income markets, and that scenarios need to be generated against this set-up.

Again, it seems more fruitful to rely on a Nelson-Siegel type model that rely on a short rate factor, rather

than the level factor. Yet other example is the evaluation of trading strategies and return decompositions. To

the extent that trading positions are specified in terms of actual yield curve points, for example long/short

the 2y-10y spread positions, curvature positions, e.g. as combinations of the 2Y-5Y-10Y, and so on, it may

be relevant to model directly yield curve points, rather than the level, slope, and curvature factors.

Under the requirement that the desired alternative factor interpretation can be expressed as a linear

combination of the existing factors, it is possible to find a rotation matrix A, where I = A−1 ·A, such that

the desired factor structure emerges.

Consider the observation equation from the standard dynamic model. We can naturally expand this

expression by I, without changing it in any way. This is done below:

2 Factor rotation is a well-known concept in statistical analysis, see e.g. Johnson and Wichern (1992)[ch. 9.4].
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yt = a+ b ·Xt +Σy · ut

= a+ b · I ·Xt +Σy · ut

= a+ b · A−1 · A ·Xt +Σy · ut. (3.4)

By doing this, we have obtained new interpretations of the factors and the factor loadings, that are in

accordance with the chosen A matrix.

b̃ = b · A−1 (3.5)

X̃t = A ·Xt. (3.6)

Later on we will see how to choose A, for now the objective is to see how the state equation changes:

X̃t = A ·Xt = A (k + Φ ·Xt−1 +ΣX · et) (3.7)

= A · k +A · Φ ·Xt−1 +A ·ΣX · et (3.8)

= A · k +A · Φ · A−1 · X̃t−1 +A ·ΣX · et, (3.9)

= k̃ + Φ̃ · X̃t−1 + Σ̃X (3.10)

where the last line follows from (3.6). The parameters of the rotated model can be read from equation

(3.9), and are:

k̃ = A · k (3.11)

Φ̃ = A · Φ · A−1 (3.12)

Σ̃X = A ·ΣX . (3.13)

In practical applications of rotated models, it is naturally enough to rotate the loading matrix, b, in

the observation equation, and then to proceed with the estimation as usual. Doing this will result in the

extraction of rotated factors as well. The above equations (3.11)-(3.13) are only needed, if a standard model

has been estimated, and it subsequently needs to be rotated, or, if a rotated model has been estimated,

and it needs to be un-rotated.

How is A determined? This naturally depends on the desired factor interpretation. Below I will present

three simple cases where the factors will have interpretations as: [short rate, slope, curvature], as [2Y yield,

5Y yield, 10Y yield], and as [short rate, 10Y term premum, 10Y rate expectation].

3.3.1 A short rate based model

As we have seen many times, the original Nelson-Siegel factors are level, slope and curvature. To obtain

a factor structure that equals {short rate, slope, curvature} we see that the following A-matrix will
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do the trick (“SRB stands for short rate based”):

ASRB =


1 1 0

0 -1 0

0 0 1

 .

Lets insert it and see if it rotates that factors as desired:
short rate

slope

curvature

 =


1 1 0

0 -1 0

0 0 1

 ·


level

-slope

curvature

 =


level-slope

slope

curvature

 .

It is important to recall that nothing is gained in terms of model fit, or improved forecasting performance,

after a rotation is performed. This is clear since I = A · A−1. Only the factor interpretation is changed.

3.3.2 Using yields as factors

Another rotation that may be relevant for practical work, is towards an interpretation of the as yield

curve points. In the example below, the Nelson-Siegel factors are rotated to have interpretations as the

[2Y, 5Y, 10Y] yields. To achieve this, we need to establish a link between the Nelson-Siegel factors and

the desired factor interpretation. Often, it is mentioned in the literature that the following relationships

hold: [level = 10Y yield], [-slope = 3m yield - 10Y yield], and [curvature = 2× 2Y yield - 10Y yield -

3m yield]. From this we could, in principle, obtain a rotation matrix, that approximate would give us the

factor interpretation that we are looking for. But, it may be better to devise a general methodology that

also would work, should we want to implement other types of factor interpretations/rotations. This can be

done in a (perhaps) surprisingly simple way, by using linear regression. Of course, a pre-requisite for this

methodology to work is that the factors we rotate towards are observable or can be estimated.

To fulfil our current factor appetite, we fill the entries of the rotation matrix via the three OLS

regressions (see appendix with the MATLAB code to see how this can be implemented in practise):

y2Y = Ay(1,:) · X̂
NS

y5Y = Ay(2,:) · X̂
NS

y10Y = Ay(3,:) · X̂
NS . (3.14)

The regressions are run with the normalisation constraint that the impact of the level factor is equal to 1

for all rotated factor. Doing this gives:
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Ay =


1.00 0.56 0.28

1.00 0.31 0.26

1.00 0.15 0.16

 . (3.15)

Even if we firmly belief that this approach will work, it may be a good idea to perform a double-check.

First, we can visually inspect how well the rotated factors match the observed counterparts. This is done

in Figure 3.5, with convincing results: the lines are indistinguishable. Second, we see whether the rotated
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The figure compares the yield curve factors of a rotated dynamic Nelson-Siegel model, where the
factors are the 2Y, 5Y, and 10Y yield curve points, with the actually observed 2Y, 5Y, and 10Y
yield curve points. The lines fall on top of each other, therefore only one line is visible in the
panels.

Fig. 3.5. 2Y, 5Y, and 10Y yields, and rotated NS factors

model fits the observed yields as well as the Nelson-Siegel model does. This assessment can be made on

the basis of the RMSE across maturities. Table 3.3 shows the obtained numbers. As expected, the RMSEs

of the rotated model are exactly the same as those obtained from the original Nelson-Siegel model.3

3 It is worth noting that the RMSEs reported in Table 3.3 deviate slightly from the ones reported in Table 3.2.
This is due to the difference in estimation methods applied: the results obtained in Table 3.2 rely on a state-space
implementation, where as the results in Table 3.3 are based on a step-wise OLS implementation (via the TSM
(Term Structure Model) object-oriented class), where the time-decay parameter is determined to a precision of
three decimals.
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τ in months 3 12 24 36 48 60 72 84 96 108 120

NS (OLS) (bps) 8.42 14.03 4.89 3.57 5.31 5.60 4.54 2.59 1.16 3.48 6.45

Rotated (bps) 8.42 14.03 4.89 3.57 5.31 5.60 4.54 2.59 1.16 3.48 6.45

RMSEs are calculated for the dynamic Nelson-Siegel model estimated using a two-step OLS
methodology, as implemented in the object-oriented Term Structure Model (TSM) class, and
for the model presented in the text, where the Nelson-Siegel factors are rotated to be the time
series of the 2Y, 5Y, and 10Y yield curve points.

Table 3.3. RMSE (basis points)

3.4 The building blocks that shape the yield curve

Even if we resist the strong temptation to impose arbitrage constraints on our model, we will still be able

to extract and analyse the fundamental building blocs that shape the location and dynamics of the yield

curve. These are: (a) the term structure of term premia, and (b) the term structure of rate expectations.

To assess the current economic environment in terms of risks and expectations to future economic growth,

it is important to have reliable estimates of the term premium and the expected risk-free term structure.

As also mentioned in the section describing the P and Q measures, the term premium, θt,τ , at time t for

some maturity τ , is a summary measure for the risks that financial agents deem to face, when trading

fixed income securities. The items displayed in italics font are typically not included in the list, when we

deal with risk-free sovereign bonds, as we do here. However, they are included just to remind us of these

additional systematic risk factors, when we start working with corporate bonds, and possibly less liquid

market segments:

• uncertainty about the economic growth rate

• uncertainty about the inflation rate

• credit migration risk

• default risk

• liquidity risk

The risk-free term structure is constructed mechanically as the average of the short rate (P)-expectation

over future periods. It is risk free, because the one period (short) rate is risk-free, period after period.

Another way to realise this, is to consider that a model needs to be fitted to historically observed short

rate data, that represent past realisations of the risk-free rate.

Following Gürkaynak and Wright (2012), the risk-free term structure can be calculated as:

yrft,τ =
1

τ
· Et

τ−1∑
j=0

rt,t+j , (3.16)

and, the term premium as the difference between the model fitted yield, ŷt,τ and the risk-free yield, yrft,τ :
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θt,τ = ŷt,τ − yrft,τ . (3.17)

To illustrate how we can obtain rate expectations and term premia also from models that do not

exclude arbitrage by construction, and to see to what extent they differ from model to model, we perform

the following case studies, comparing the:

(A) 3-factor SRB model with the standard Nelson-Siegel parametrisation.

(B) 3- and 4-factor SRB models.

(C) 3-factor SRB model with and without bias correction (what bias correction entails will be outlined

below).

(D) 3-factor SRB model with different assumptions on the mean of the short rate.

(E) 3-factor SRB model with published term premium and rate expectations from the Adrian, Crump, and

Mönch (2013) and Kim and Wright (2005) models.

Before embarking on this task, we need to introduce the 3- and 4-factor versions of the short rate based

(SRB) model. The state and transition equations of the 4-factor model will be presented, since the 3-factor

model is simply a constrained version of the 4-factor model; the constraint being that the fourth factor is

deleted in the 3-factor version of the model. We will use a discrete-time version of the model, and we will

derive it formally in a later chapter. For now, only the relevant equations are presented, like in the case of

the Nelson-Siegel model, as shown in equations (3.1) and (3.2).

The 4-factor model is shown in equations (3.18) and (3.19).

Xt = µ+ Φ · (Xt−1 − µ) +ΣX · et (3.18)

yt,τ = bτ ·Xt +ΣY · ut

=

[
1 1− 1−γτ

(1−γ)·τ −γ
τ−1 + 1−γτ

(1−γ)·τ −
1
2 (τ − 1)(γ − 1)γ(n−2)

]
·Xt +ΣY · ut (3.19)

Note that we have written the VAR(1) model in (3.18) in mean-adjusted form, so µ is the mean of the

included factors. Since we know that the the first factor in Xt is the short rate, we can work on equation

(3.16), and turn it into a closed-from expression, in the following way:



60 3 The Basic Yield Curve Modelling Set-up

yrft,τ =
1

τ
· Et

τ−1∑
j=0

rt,t+j

=
1

τ
·

rt + Et
τ−1∑
j=1

rt,t+j


=

1

τ

X ′t · ι+

Et τ−2∑
j=0

µ+ Φ · (Xt+j − µ)

′ · ι


=
1

τ

{
X ′t · ι+

[
(τ − 1) · µ+

Φτ − Φ
Φ− I

· (Xt − µ)

]′
· ι

}
(3.20)

where ι is a vector of appropriate dimension that selects the first element of the vector generated inside

the brackets, i.e. ι = [1, 0, 0, 0]′ when we work with a 4-factor model, and ι = [1, 0, 0]′, when we work with

a 3-factor model. The reason for separating out the (X ′t · ι) part is to highlight that this equals rt, and the

factor, (Φτ − Φ)(Φ− I)(−1), originates as the limit of the sum of the power series implied by line three of

(3.20).

It may be worth highlighting that it is much simpler to use the close-form expression in (3.20) compared

to calculating the rate expectation using the summation over all τ , as implied by (3.16). The closed form

expression is both faster and less computational intensive. While this is not a big deal when using monthly

data, it may be an issue, if we estimate the model on daily data. Imagine we want to calculate the 10-year

rate expectation, and we have estimated our model on daily data, and we that have data for the period

from January 1961 to July 2018, a total of around 14, 800days. When using (3.20) we would then need

to roll-forward the state equation (3.18) for 3, 650 observation points, for each of the 14, 800 days covered

by our sample; implying that we would need to calculate Φk for k ∈ {1, 2, . . . , 3650} at each observation

point, i.e. a total of 54mill calculations. Compared to this, it is easier to use (3.20), because only 14, 800

calculations are needed, i.e. one for each day. A second thing that is worth mentioning is that any of the

two outlined calculation methods can be efficiently completed using the eigenvalue decomposition4 of Φk:

Φk = V ·Dk · V −1, (3.21)

where V is the matrix of eigenvectors, and D is a diagonal matrix of eigenvalues. Recall that it requires

much less computational effort to calculate the power of a diagonal matrix, because one just need to raise

each diagonal element of the matrix to the desired power.

Case (C) in the above list aims to investigate the relevance of bias-correcting the VAR(1) model,

included in the state equation. When estimating a VAR model using OLS, on relatively few time-series

data points as it is often the case in yield curve applications, the parameters of the VAR can be biased

downwards. This implies that the estimated factors can exhibit a lower degree of persistentcy, compared

4 Can be obtained in MATLAB using the eig command.
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to their true process parameters. I think Bauer, Rudebusch, and Wu (2012) were the first to highlight this

issue. Our bias correction method, which is implemented in MATLAB via the Term Structure Class (TSM)

that accompany these lecture notes, is based on the description in Engsted and Pedersen (2014), of the

analytical approach suggested by Pope (1990).

The persistency of the factors is naturally important for the decomposition of the yield curve into rate

expectations and term premium components. Imagine, for example, that the short rate factor exhibits a

very low degree of persistency, in fact so low that the process converges to its sample mean within three

to seven years, for any of the short rate levels observed in the sample. Consequently, if we focus on the 10-

year rate expectation, it will equal the sample mean for all dates covered by the sample, and the resulting

time series of 10-year rate expectations is just a constant flat line equal to the sample mean, lets say, for

example, 4.88%. Then we will obtain a time series of 10-year term premium estimates that is equal to

ŷt,τ=10years − 4.88, and assuming that the model fits data well, then this is very close to being equal to

the observed series of 10-year yields minus 4.88%. Not a very believable result. At the other end of the

absurdity-scale is a super-highly persistent process. Imagine a process where the short rate hardly moves

from its starting point, and it e.g. takes 10, 000 years for the process to converge to its sample mean.

Calculating the term premium in this case amounts approximately to calculating the slope of the yield

curve (again assuming a good fit of the model), at any date covered covered by the sample. An equally

unbelievable outcome. So, the persistency of the estimated VAR model typically has a large impact on the

model derived expectations/term premium decomposition - we will check this empirically below.

All estimations done in the context of the five case studies are performed used the TSM class. To learn

more about this object-oriented class, you can type help TSM at the command prompt. The basics of it is:

(1) To create an instance of the TSM class. An instance is, so to say, your private copy of the class, that

you can work with. To create an instance, type: <name>=TSM, for example: SRB 1 = TSM.

(2) The created instance can now be populated with data: SRB 1.yields=Y (assuming that the data to be

used for the estimation of the model are stored in the matrix Y), SRB 1.tau=tau, (assuming that the

vector of maturities is stored in tau), and SRB 1.DataFreq=12, if data are sampled at a monthly time-

interval. And so on. It should be noted that the variable names used in the TSM class are not optional,

so the name that appears after the dot, i.e. in the example above .yields, .tau, and .DataFreq,

has to be used as shown in the help file - the TSM class does not understand if yields, for example,

are assigned to a container called SRB 1.YieldsForTheModel, or any other user-defined name. On the

other hand, the name of the class instance, i.e. SRB 1 can be chosen freely.

(3) Given that all data have been passed successfully to the created instance, any of the models covered by

the class can be estimated. Four models are covered at the moment, but this number will increase over

time. The following are covered: the Dynamic Nelson-Siegel model, the dynamic Svensson-Soderlind

model, the 3-factor SRB model, and the 4-factor SRB model.
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(4) Any of the models can be estimated using the command .get<model name>. For example, to estimate

the 3-factor SRB model we would write: SRB1 = SRB 1.getSRB3. This estimates the desired model,

and stores the results in the created class instance called SRB 1. The other models are estimated using

the commands: .getDNS, .getDSS, and .getSRB4, respectively.

(5) The output covers, among other, model parameters, time series of extracted yield curve factors,

RMSE, the term structure of term premia (at the provided maturities), and the term structure of

rate expectations (at the provided maturities).

To complete the scenarios outlined above, we will implement the five steps from the above list. More

details on the coding can be found in MATLAB appendix in section 4.3. Comparisons will be drawn in

terms of rate expectations and term premia, typically at the 10-year maturity point; model fit in terms of

RMSEs, and persistency of the VAR(1) model featuring in the state equation and judged on the basis of

the eigenvalues of Φ̂.

Case (A): Comparing the 3-factor SRB model with the standard Dynamic Nelson-Siegel

model

Figure 3.6 draws a comparison between the 3-factor SRB model, and the Dynamic Nelson-Siegel(DNS)

model. While these models have different factor interpretations - the SRB-model explicitly includes the

short rate, and the DNS model explicitly includes the long-term rate (i.e. the yield curve level) - they are

very similar, and intimately linked via the rotation matrix A. However, since the SRB model is derived in

discrete-time (as we will see later on), and the DNS model is derived in a continuous time, the link between

the two models, via a rotation-matrix, does not produce mathematically identical models.5 It is actually

not possible to rotate the DNS model into the SRB model, as it is used here, because of the mentioned

difference between the models. But, it is possible to rotate the DNS model into a continuous-time SRB

model, and the difference between this rotated model, and the SRB model (in discrete-time) is very, very

small. So, this is the degree of intimately between the two models used in this section.

5 The practical difference is that the SRB model’s loading structure is defined in terms of power functions,
while the DNS model relies on exponentials. The continuous-time limit of a power function is the exponential
function: recall, for example, the link between discretely and continuously compounded interest rates:
limn→∞

(
1 + r·T

n

)n
= erT .
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The figure shows the 10-year term premium estimates from the 3- and 4-factor SRB models. In the figure, the

upper panel shows the 10-year term premium, and the lower panel shows the 10-year expectations component.

Estimates from the standard SRB3 model is shown in blue, and the mean adjusted version is shown in (red).

For comparison, the observed 10-year yield is plotted in yellow, in the upper panel.

Fig. 3.6. the SRB3 and DNS models

RMSE (basis points)

τ in months 3 12 24 36 48 60 72 84 96 108 120

SRB3 8.50 14.08 4.89 3.54 5.28 5.56 4.51 2.57 1.15 3.44 6.38

SRB3, bias corrected 8.42 14.03 4.89 3.57 5.31 5.60 4.54 2.59 1.16 3.48 6.45

Eigenvalues of Φ̂

1 2 3

SRB3 0.990 0.957 0.808

DNS 0.990 0.957 0.807

RMSEs are calculated and shown in basis points for the two models under investigation, together with the
eigenvalues of Φ̂, sorted in descending order.

Table 3.4. Case A: RMSE and eigenvalues

The similarity between the models is confirmed in Figure 3.6, with the plots of the 10-year rate

expectation and term premia being indistinguishable from one model to the next. A minor difference

is observed on the third eigenvalue, where the SRB model is insignificantly more persistent than the DNS
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model; likewise, minor and non-significant differences are seen in terms of in-sample fits. For practical

purposes in the area of extracting past information from the 3-factor SRB and DNS model, they are

identical. In a later section of the lecture notes, we will see whether this conclusion also carries over to the

forecasting performance of the models.

Case (B): Comparing 3- and 4-factor SRB models

Including an additional factor into the SRB model greatly improves the in sample fit, as seen in Table

3.5, but dispite of this, there is hardly any difference to detect between the models’ output in terms of

rate expectations and term premia, as seen in Figure 3.7. This result echoes the mantra that the potential

merits of a model should never be judged only on its in-sample performance. Clearly, as more yield curve

factors are added, the in-sample fit will, by definition, improve. One can think of a good in sample fit, as

being a minimum requirement for including a given model into the toolbox of models that one relies on: as

long as a model provides a reasonably good in sample fit, say below 10-20 basis points per maturity bucket,

then it is worthwhile to consider whether other features makes it worthwhile to start using the model.
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The figure shows the 10-year term premium estimates from the 3- and 4-factor SRB models. In the figure, the

upper panel shows the 10-year term premium, and the lower panel shows the 10-year expectations component.

Estimates from the standard SRB3 model is shown in blue, and the mean adjusted version is shown in (red).

For comparison, the observed 10-year yield is plotted in yellow, in the upper panel.

Fig. 3.7. the SRB3-model with bias correction
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RMSE (basis points)

τ in months 3 12 24 36 48 60 72 84 96 108 120

SRB3 8.50 14.08 4.89 3.54 5.28 5.56 4.51 2.57 1.15 3.44 6.38

SRB3, bias corrected 1.48 4.76 3.92 2.77 1.01 1.94 2.52 2.12 0.98 1.02 3.06

Eigenvalues of Φ̂

1 2 3 4

SRB3 0.990 0.957 0.808

SRB4 0.990 0.957 0.893 0.640

RMSEs are calculated and shown in basis points for the two models under investigation, together with the
eigenvalues of Φ̂, sorted in descending order.

Table 3.5. Case B:RMSE and eigenvalues

Case (C): Comparing 3-factor SRB models with and without bias correction

Bauer, Rudebusch, and Wu (2012) remind us that Φ, in the VAR model: Xt = µ+Φ · (Xt−1 − µ) +ΣXet,

most likely will be biased downwards in term structure applications, because lagged endogenous variables

are included, and the VAR is estimated using OLS. Too low persistency in the yield curve factors, and hence

also in the short rate process, may severely impact measure derived from the term structure dynamics, such

as rate expectations and term premia estimates. On the other hand, it is worth noting that the potential

bias is reduced, as the number of time series observations is increased. For instance, Engsted and Pedersen

(2014) show that the bias nearly disappears when the sample comprises 500 observations in the time series

dimension. However, the simulation study they conduct is based on a VAR that at the outset exhibits

somewhat less persistency compared to what is typically encountered in term structure models. So, it is

not clear that their result can be directly transferred to a term structure context.

Using the closed form bias-correction methodology of Pope (1990), we compare the impact of bias

correction on the 3-factor SRB model. Results are shown in Figure 3.8 and Table 3.6.

A higher degree of persistency implies that the short rate process reverts in a more sluggish manner

towards its sample mean. The impact of this on derived rate expectations and term premia estimates, is

that the time series evolution of the 10-year rate expectation (we use 10-years here because this is what is

shown in the figure, but the conclusion holds for any maturity point) is that the rate expectation becomes

more volatile, assuming that one or more rate cycles are contained in the data sample. The mirror image

of this is, of course, that the term premia will evolve more smoothly. And, this is exactly what we observe

in Figure 3.8.

Table 3.6 shows that the bias correction has absolutely no bearing on the in sample fit. It is interesting

to note that accounting for potential biases in Φ̂ only affects the relative weighting of the rate expectation

and term premia components (that together make up the model fitted yield), and not of the overall fit of

the model.
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The figure shows the 10-year term premium estimates from the 3-factor SRB model and a version of the

model where Φ in the transition equation, Xt = µ+Φ (·Xt−1 − µ)+ΣXet, is bias corrected according to Pope

(1990). In the figure, the upper panel shows the 10-year term premium, and the lower panel shows the 10-year

expectations component. Estimates from the standard SRB3 model is shown in blue, and the mean adjusted

version is shown in (red). For comparison, the observed 10-year yield is plotted in yellow, in the upper panel.

Fig. 3.8. the SRB3-model with bias correction

RMSE (basis points)

τ in months 3 12 24 36 48 60 72 84 96 108 120

SRB3 8.50 14.08 4.89 3.54 5.28 5.56 4.51 2.57 1.15 3.44 6.38

SRB3, bias corrected 8.50 14.08 4.89 3.54 5.28 5.56 4.51 2.57 1.15 3.44 6.38

Eigenvalues of Φ̂

1 2 3

SRB3 0.991 0.957 0.808

SRB3, bias corrected 0.998 0.962 0.816

RMSEs are calculated and shown in basis points for the two models under investigation, together with the
eigenvalues of Φ̂, sorted in descending order.

Table 3.6. Case C: RMSE and eigenvalues
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Case (D): The SRB model with a constraint on the mean of the short rate
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The figure shows the 10-year term premium estimate from the 3-factor SRB model, and a version where the

mean vector, µ, in Xt = µ + Φ (·Xt−1 − µ) + ΣXet, is altered. A constraint is imposed such that the mean

of the short rate factor equals 2.00% (changed from 4.88%, which is its sample mean). The the slope and

the curvature parameters are left at their sample means. In the figure, the upper panel shows the 10-year

term premium, and the lower panel shows the 10-year expectations component. Estimates from the standard

SRB3 model is shown in blue, and the mean adjusted version is shown in (red). For comparison, the observed

10-year yield is plotted in yellow in the upper panel.

Fig. 3.9. Mean adjusting the SRB3-model

For scenario analysis, or because the sample mean is judged to poorly reflect the true mean of one or more

of the underlying yield curve factors, it may be relevant to impose constraints on the mean vector, µ, in

the transition equation. Figure 3.9 shows the impact of doing this. For illustrative purposes, it is assumed

that the true mean of the short rate is 2.00%, and this is imposed on the optimisation algorithm estimating

the VAR parameters; the in sample mean is 4.88%, so changing it to 2.00% is somewhat of a moderate

to substantial change. In Figure 3.9 a comparison between the standard 3-factor SRB model, i.e. where

sample means are used for µ, and the constrained version of the model. It is clear that this constraint has

a significant influence on the 10-year rate expectation, and the 10-year term premium. In fact, the time

series evolution of the gauges shown in Figure 3.9 bears a lot of resemblance to the ones produced in Case

C, i.e. where the bias correction is active, as shown in Figure 3.8.
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Having a look at the eigenvalues in Table 3.7, confirms that not only is the mean of the short rate

changed, also the persistence of the process has changed: the eigenvalue for the short rate process (the

first factor) in the plain SRB3 model is 0.9909, when constraining the mean, this eigenvalue increases to

0.9956, and finally, when bias correction is introduced the eigenvalue equals 0.9976.

Why does the persistence of the VAR model change, when constraints are imposed on µ? One part of

the system has to change such that the constrained set of means can be achieved, and the only part left in

the equation is the Φ matrix, since the fit of the model, as seen in Table 3.7, is virtually unchanged. Let’s

consider the univariate case (which clearly generalises to the multivariate case), and assume that the yield

curve factor is the short rate and it follows the AR(1) process:

RMSE (basis points)

τ in months 3 12 24 36 48 60 72 84 96 108 120

SRB3 8.50 14.08 4.89 3.54 5.28 5.65 4.51 2.57 1.15 3.44 6.38

SRB3, mean adjusted 8.42 14.03 4.89 3.56 5.31 5.60 4.54 2.59 1.16 3.47 6.45

Eigenvalues of Φ̂

1 2 3

SRB3 0.991 0.957 0.808

SRB3, mean adjusted 0.996 0.960 0.827

RMSEs are calculated and shown in basis points for the two models under investigation, together with the
eigenvalues of Φ̂, sorted in descending order.

Table 3.7. Case D: RMSE and eigenvalues

Case (E): Comparing the 3-factor SRB model with published term premium from the ACM

and KW models

It is seen that Figure 3.10 confirms the notion highlighted in above figures, that the main variation in

term premia do not come from the applied model, but from the data sample used, and the thereby implied

persistency of the underlying yield curve values and the convergence level for the factors, i.e. their sample

mean. The KW premium estimate deviates most from the other two, and this is probably due to the

different estimation window used. KW estimates only spans the period from 1990 and on-wards, and the

persistency and the sample mean of the factors is therefore likely different from the parameter estimates

used in ACM and SRB3. We seen that the SRB3 and ACM 10−year term primia are very similar, both

in terms of dynamic behaviour and levels.

A relevant question to ask, with respect to published model estimates, is whether the parameter

estimates are updated regularly, or whether they are kept constant over time. One would think that it

would be better to update parameters such that the derived metrics make use of as much information

as possible. However, updating parameters means that the newly produced estimates are not backward-
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comparable, since earlier estimates were based on another set of parameter estimates. This then opens the

gate to potential confusion, since different vintages of term premia estimates would have to be published,

one vintage for each parameter update, and it does not take much imagination to envisage the problems

that can transpire from such a setting, especially when the metrics are used to support policy decisions

on e.g. strategic asset allocation issues. Another issue is the standard choice to be made in terms of the

length of the data history to include in the estimation of any model, i.e. the trade-off between additional

parameter accuracy against the possibility of covering distinct economic regimes. In the end, this choice is

not so trivial.
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The figure shows the 10-year term premium estimates from the 3-factor SRB mode, the ACM model (Adrian,

Crump, and Mönch (2013)) and the KW model (Kim and Wright (2005)). The KW estimate is available from

1990 on-wards. Both the ACM and KW estimates are downloaded from Bloomberg.

Fig. 3.10. SRB3, ACM, and KW 10-year permia

3.5 Modelling yields at the lower bound

A non-negligible part of the term structure literature deals with the modelling of the yield curve and its

dynamics, when the level of yields approaches zero, or hovers around some low level.6 Such approaches

have become increasingly popular, as the monetary policy rates have decreased steadily in Japan, the US

6 For a representative sample of the literature, see, Black (1995), Lemke and Vladu (2017), Kim and Priebsch
(2013), Christensen and Rudebusch (2013), Wu and Xia (2015), Bauer and Rudebusch (2014), and Krippner
(2015b).
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and UK, as well as the euro zone, at least since around 2008/2009. To illustrate, Figure 3.11 shows the

evolution of the short end of the term structure in the mentioned economics. The majority of this literature
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The figure shows the evolution of the 1 year yields in the euro area, the US, UK and Japan, from
January 1999 to August 2018. The data used are obtained from Bloomberg, and the following series
are used: EUSWE1 Curncy (euro area OIS rate), I11101Y Index (on-the-run US curve), GUKG1
Index (UK generic yield curve), GTJPY1Y Govt (JP generic yield curve). Data are observed
monthly.

Fig. 3.11. The maturity and time dimension of yield curve data

falls within the arbitrage-free framework, and it builds on Black (1995). Black suggests that the observed

nominal rate, rt, cannot be negative, because agents in the economy can hold cash at zero cost. We know

now, that this is not necessarily completely true, since we have seen negative yields to a great extent, over

the last years: just have another look at Figure 3.11 and observe that the 1 year yields is Japan and the euro

area has been in negative territory since 2015. And, today (18 September 2018), according to Bloomberg,

the German sovereign curve displays negative yields from the 3-months to the 6-years maturity points. So,

there are storage costs, and the possibility of being robbed. For these, and possibly other reasons, it is

possible to observe negative rates in the economy.7 But, this does of course not invalidate the modelling

7 A negative rate can be interpreted as the storage cost of money, and/or the insurance premium to be paid to
avoid running the possibility of being robbed while have large amounts of cash tucked away in the mattress at
home - just imagine, for example, how many mattresses Goldman Sachs would need.
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idea proposed by Black (1995); rather than having a zero-lower bound, we can simply work with a lower

bound, set at some reasonably low level.

Following Black (1995) the observed short rate, rt, is modelled like a call-option, where the underlying

asset is the unconstrained shadow short rate, st:

rt = max(0, st) (3.22)

Here, we will also use Black (1995) as a starting point, but then we will deviate from the main-stream

approach, and build a Nelson-Siegel inspired shadow short rate model. This is done mainly for illustrative

purposes, but also in the hope that it possibly could be useful from a yield-curve practitioners view-point.

One of the arguments for using a shadow short rate model is that traditional dynamic yield curve

models have difficulties in matching the persistence displayed by yields when they evolve around a lower

boundary, as e.g. seen in Figure 3.11 since 2009. As we have seen, yield curve factors are modelled using a

stationary VAR model framework, and, consequently, yield curve factors, and thereby yields, will naturally

converge back to their historical means, when projected forward. To circumvent this “problem”, the shadow

short rate idea allows for the evolution of an unobserved short rate process, which is then truncated at

some lower level, if the process at some point passes this threshold. In this way, if the underlying process,

i.e. st, displays some level of persistence and stays in the truncation zone for an extended period of time,

we will be able to replicate the observed dynamics of rt, and then also the hovering dynamics of yields at

longer maturities. There is one other potential benefit of shadow rate models, and that is if the short rate

is modelled together with macroeconomic variables. It is econometrically challenging to model the joint

dynamic evolution of the short rate and macroeconomic variables, if the short rate appears to be truncated,

i.e. if it stays around the lower bound for years. Allowing the shadow short rate to move freely makes it an

ideal candidate to enter into a model where the evolution of the yield curve and macroeconomic variables

are modelled jointly.

Ok, enough introductory talk: lets get to work. First thing first: we need to agree on an appropriate

functional form for the truncation function in (3.22). Since I am the only one here at the moment, this

discussion is not as complicated, as it otherwise could be (since I do not tend to object much), and we will

therefore use the short-hand approach implied by Coche, Nyholm, and Sahakyan (2017):
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ỹτ =

[
1 1− 1−γτ

(1−γ)·τ −γ
τ−1 + 1−γτ

(1−γ)·τ

]
· X̃t (3.23)

α (X) =
tanh

(
ψ1 ·X(2,1) + ψ2

)
+ 3

2
·
tanh

(
ψ3 ·X(3,1) + ψ4

)
+ 3

2
∈ [1, 4] (3.24)

yτ = rL +
ỹτ − rL

1− e[−α(X̃)·(ỹτ−rL)]
(3.25)

It is the intuitive appeal of the α(X)-function, that draws me towards relying on this framework. No,

seriously, lets have a look to better understand what these functions are about. It is important to know

that (3.24) and (3.25) work together with the short-rate-based (SRB) version of the Nelson-Siegel model,

i.e. where the factors have interpretations as [short rate, slope, curvature], as shown in (3.23). The variables

ỹ and X̃, refer to the shadow yield curve and the shadow factors, respectively. The shadow factors are the

shadow short rate, the shadow slope, and the shadow curvature.8 Equation (3.25) indicates that the shadow

yield curve, ỹt, is transformed into the observed yield curve, yt. This is similar to the traditional shadow-

short-rate set-up, where the dynamics of the shadow rate impacts the shape and location of the whole

yield curve. The α-function in (3.24) generates a scalar-weight that is applied to the shadow yield curve,

depending on the values at time t, of the shadow-slope and the shadow-curvature factors, contained in X̃.

ψ1-ψ4 are scaling constants applied to the shadow slope and the shadow curvature. There are quite a number

of moving parts - the impact of parameter constellations of ψ1 to ψ4, together with the value of the shadow

factors contained in X̃ can be explored using the interactive MATLAB app called “PG2TSM SSR original”

contained in the MATLAB library accompanying these lecture notes.

Two screen-shots generated using the app is shown in Figure 3.12. This is done to give a brief view on

how certain parameter settings affect the shape and location of the curves.9

8 For practical reasons, when the model is estimated we constrain the shadow curvature to be equal to the curvature
obtained from the short rate based version of the Nelson-Siegel model.

9 The app is flexible and allows for analysing other curves, and all parameters can be selected by the user.



3.5 Modelling yields at the lower bound 73

(a) September 2009 (b) November 2011

Panel (a) shows an example using data from 30 September 2009. The black circles in the figure

shows the observed curve on this day. The red curve shows the shadow short rate, generated using

the app. And, the blue line shows the corresponding fitted yield curve, i.e. the transformed shadow

short rate using equations (3.23)-(3.24). Similarly, Panel (b) shows a fitting example using data

observed on 30 November 2011.

Fig. 3.12. Examples using the MATLAB Shadow Short Rate App

One thing is to use the above mentioned Shadow Short Rate App to fit the shadow short rate model to

a single yield curve. Although it would be entertaining (at least for a while), it would be too consuming to

fit shadow short rates to the whole set of monthly US yields cover the period from 1961 to 2018. Instead,

we apply equations (3.23)-(3.24) to the whole data set at once, and minimise the overall sum of squared

residuals to find the shadow short rate and the shadow slope; we impose the constraint that the shadow

curvature is equal to the SRB curvature estimated on the observed yields. To obtain the estimates, the

following steps are applied:

1. Estimate the SRB model via the TSM class, to obtain X̂t ∀t using (3.23)

2. Guess values for ˆ̃Xt ∀t, a handy way to make these guesses is to use X̂t

3. calculate α̂t|{ ˆ̃Xt, ψ1, ψ2, ψ3, ψ4}, i.e. one value for α̂ per observation point included in the data set,

conditional on the generated shadow factors and the fixed parameters ψ1 to ψ4. This step is done via

(3.24)

4. calculate ŷt ∀t using (3.25)

5. calculate the sum of squared residuals between the observed yield curve data, y, and the fitted yield

curves,
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6. ask MATLAB to minimise this quantity:
∑
t

∑
tau (y − ŷ)

2
, calculated in step 5, by repeating steps

2-5, until optimal parameter values for the shadow short rate and the shadow slope are obtained

Following these steps produces a time series of shadow short rates as shown in Figure 3.13.
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The figure shows the estimated shadow short rate using the estimation framework outlined in the
text (red line), based on Coche, Nyholm, and Sahakyan (2017). This estimate is compared with
two officially published estimates downloaded from Bloomberg. One is produced by Fed Atlanta
using the model presented in Wu and Xia (2015) (yellow line), and the other is produced by Leo
Krippner (Reserve Bank of New Zealand) following Krippner (2015b) (purple line). Both of these
series are available via Bloomberg as “wuxiffrt index” and “nzssus index”, respectively. The last
(blue) line shows the short rate factor estimated by the SRB model.

Fig. 3.13. Shadow short rate estimates

It is observed that the time series behaviour of our measure10 (red line) is similar to the estimate

produced by Krippner (2015b) (purple line). The minimum value for both estimates occur on the same

date (April 2013), and the dynamics towards and from this minimum point is roughly the same, with our

measure falling a bit faster, and raising towards normalisation-levels a bit slower, compared to Krippner’s

measure. In contrast to this, Fed Atlanta’s shadow short rate measure, based on Wu and Xia (2015) (yellow

line), behaves in a distinctly different manner. It decreases very slowly, almost linearly until October 2013,

after which the decline picks up speed, and it reaches its minimum on May 2014.

10 By “our measure” I mean the estimate obtained from the methodology proposed by Coche, Nyholm, and Sahakyan
(2017). And, “our” is used as an inclusive term here, that also comprises you, the reader: because, the code is
available in the annex, and it can be used freely (at your own risk, of course).
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A detailed chronology of the Fed’s QE actions is provided in Krippner (2015a), and he further shows

that the Krippner measure better reflects these actions, than the Wu and Xia short rate measure does. His

conclusion is therefore, that as a gauge of the effective monetary policy stance, when unconventional policies

are enacted, the Krippner measure is more precise. The reason for this is probably, as also highlighted by

Krippner (2015a), that Krippner’s model includes two-factors, and the model of Wu and Xia (2015) includes

three factors. We typically model the yield curve using three factors, for example, the level, the slope, and

the curvature. However, when yields are close to the effective lower bound, one of these dimensions will

be redundant, because the short rate is fixed, and the level and the slope will consequently measure the

same thing, namely the difference between a constant and the long end of the yield curve.11 A two-factor

model is therefore more appropriate to use in such cases. But, what happens then when the economy exits

the lower bound period, and it again becomes relevant to use three factors? This is where the approach of

Coche, Nyholm, and Sahakyan (2017) comes into play. The derived shadow short rate measure is based on

three-factors, the short rate, the slope, and the curvature - but one of the factors (the curvature) is frozen,

and left unchanged, when the economy enters the effective lower bound period. And, when exit is observed

(well, rather, judged to have occurred), the factor is again unfrozen. With the chosen factor structure, it is

enough to reduce the dimensionality in the direction of the curvature, because the short short rate and the

slope will not produce redundancies. This would have been the case, if the traditional factor interpretation

as level, slope, and curvature had been chosen. To some extent, the Coche, Nyholm, and Sahakyan (2017)

methodology resembles that of a regime-switching model, where the regime is imposed exogenously on the

curvature factor.

3.6 Summary

Honestly, the materials covered in this chapter went a bit beyond what I had planned at the outset. But, I

hope that I have still managed to convey the main messages, at an acceptable and practical level, without

messing things up too much. The main takeaways from the above materials can be summarised in the

following way:

(1) Term structure models are best thought of in terms of a state-space model, where the state equation

evolves the yield curve factors over time using a VAR(1) model, and the observation equation translates

the yield curve factors into fitted yields using a loading matrix and possibly a constant as well.

(2) Even if a state-space model is used to characterise the dynamics and cross-sectional dimensions of yield

curve data, it is not always necessary to estimate the model using the Kalman-filer. A two-step OLS

procedure is often faster and yields the same results.

11 Let l, s, c, be the level, the negative of the slope, and curvature, respectively. If r = 0, or some other fixed lower
bound, then we have that r = 0 = l + s⇔ −s = l.
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(3) Assigning a certain economic and/or financial meaning to the yield curve factors is done via the choice

of the loading matrix (in the observation equation).

(4) Yield curve factor models can be rotated, such that their factor interpretation changes, without the

model fit is affected.

(5) Yield curves comprise information about future rate expectations and term premia. The distribution

between these two important gauges is model and parameter dependant. Most important for the

dissection of yields along these two dimensions is the model implied mean for the short rate, and

the persistence of the VAR(1) in the state equation.

(6) The persistence of the VAR can be changed via bias correcting techniques applied to the (autoregressive)

VAR parameters, and by imposing constraints on the mean vector in the VAR model.

(7) To better capture the behaviour of yields that evolve around some lower effective bound, it is possible

to apply the concept of shadow short rate models. These models rely on a truncation function that

maps unrestricted factors into restricted factors that match observed yields. In essence, when such a

non-linear truncation function is included into the modelling set-up, the state-space model becomes

non-linear in the underlying factors and the Kalman-filter is no longer usable. In stead, non-linear

Kalman-filters must be applied, or alternative methodologies, as presented in Section 3.5.
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3.7 Appendix: MATLAB code

3.7.1 Yield curve model estimation via the SSM toolbox

filename: Basic yield curve setup.m

1 %% Script for: the basic yield curve modelling setup

2 % Access to the MATLAB class GSW is required.

3 %

4 %% Loading and plotting data

5 %

6 load(’Data_GSW_factors_Course_2018.mat’);

7 GSW_ = GSW; % creates an instance of the GSW class

8 GSW_.tau = [3 12:12:120] ’; % vector of maturities

9 GSW_.beta = GSW_factors (: ,2:5); % yield curve factors

10 GSW_.lambda = GSW_factors (: ,6:7); % lambdas

11 GSW_ = GSW_.getYields; % getting yields

12

13 dates = GSW_factors (:,1);

14 Y = GSW_.yields;

15 tau = GSW_.tau;

16 nTau = size(tau ,1);

17

18 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

19 surf(tau./12,dates ,Y)

20 date_ticks = datenum (1960:4:2020 ,1 ,1);

21 set(gca , ’ytick ’, date_ticks);

22 datetick(’y’,’mmm -yy’,’keepticks ’)

23 xticks (0:1:11) , xticklabels ({tau}),

24 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

25 view ([ -109 38]),

26 ytickangle (-25),

27 set(gca , ’FontSize ’, 18)

28 %print -depsc Y3D

29

30 nn = 3*42;

31 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

32 subplot (2,1,1), plot(dates ,Y(:,11)), datetick(’x’,’mmm -yy’),

33 title(’10 year yield’),

34 ylabel(’Yield (pct)’)

35 set(gca , ’FontSize ’, 18)

36 subplot (2,1,2), plot(tau ,Y(nn ,:) ’,’*-’),

37 xlabel(’Maturity (months)’),

38 title([’Yield curve on ’ datestr(dates(nn))]),

39 ylabel(’Yield (pct)’),

40 ylim([0,ceil(max(Y(nn ,:))+1)])

41 xticks(tau), xticklabels ({tau}),

42 set(gca , ’FontSize ’, 18)

43 %print -depsc Yslices

44

45 %% ....................................................................

46 % ... Empirical factor structure and the Nelson -Siegel parameterisation

47 % ... This section uses the pMap function that appears at the end
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48 % ... of this script.

49 % .....................................................................

50

51 % ... Model selection

52 %

53 flagg = ’NS’; % choose: ’NS’ -> Nelson -Siegel

54 % or : ’Emp ’ -> Empirical model

55 [nObs ,nTau] = size(Y);

56 Y_dat = [Y ones(nObs ,nTau)];

57

58 % ... assigning starting values ...

59 %

60 Phi0 = [ 0.99 0.00 0.00;

61 0.00 0.99 0.00;

62 0.00 0.00 0.99];

63 k0 = [ 0; 0; 0 ];

64 Sx0 = [ 1.00;

65 0.00; 1.00;

66 0.00; 0.00; 1.00 ];

67 b0 = [ ones(nTau ,1) linspace (1,0,nTau)’ zeros(nTau ,1) ];

68 a0 = zeros(nTau ,1);

69 Sy0 = 1.00* ones(nTau ,1);

70

71 p0 = [ Phi0 (:); k0(:); Sx0 (:); b0(:); a0(:); Sy0(:) ];

72 nP = size(p0 ,1);

73

74 % ... defining upper and lower parameter bounds

75 %

76 lb_=-inf(nP ,1); lb_ (1:9 ,1)=-1; lb_ (10:12 ,1) =0;

77 lb_ ([13;15;18]) =0; lb_ (19:51 ,1)=-1;

78 lb_ (52:62 ,1)=-1; lb_ (63:73 ,1) =0;

79

80 ub_ = inf(nP ,1); ub_ (1:9 ,1)= 1.1; ub_ (10:12 ,1) =1;

81 ub_ ([13;15;18]) = 1; ub_ (19:51 ,1) =1;

82 ub_ (52:62 ,1) =1; ub_ (63:73 ,1) =1;

83

84 % ... parameter constraits ...

85 %

86 nP = size(p0 ,1);

87 % ... equal yield vols across all maturities

88 Aeq = zeros(nTau -1,nP);

89 Aeq (1 ,[63 64]) =[1 -1];Aeq(2,[64 65]) =[1 -1];Aeq (3 ,[65 66]) =[1 -1];

90 Aeq (4 ,[66 67]) =[1 -1];Aeq(5,[67 68]) =[1 -1];Aeq (6 ,[68 69]) =[1 -1];

91 Aeq (7 ,[69 70]) =[1 -1];Aeq(8,[70 71]) =[1 -1];Aeq (9 ,[71 72]) =[1 -1];

92 Aeq (10 ,[72 73]) =[1 -1];

93 % ... no constants in the observation equation (i.e. a=0)

94 if (strcmp(flagg ,’NS’))

95 Aeq (11:21 ,52:62) = eye (11);

96 end

97 % ... value of the constraints

98 beq = zeros(size(Aeq ,1) ,1);

99

100 Mdl_ = ssm(@(p) pMap(p,flagg ,tau));

101 options = optimoptions(@fmincon ,’Algorithm ’,’interior -point’ ,...
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102 ’MaxIterations ’,1e6 , ...

103 ’MaxFunctionEvaluations ’,1e6, ...

104 ’TolFun ’, 1e-6, ’TolX’, 1e-6);

105

106 [ EstMdl_ , p_hat ] = ...

107 estimate( Mdl_ ,Y_dat ,p0,’Display ’,’iter’,’Aeq’,Aeq ,’beq’,beq ,...

108 ’lb’,lb_ ,’ub’,ub_ ,’univariate ’,true ,’options ’,options );

109

110 x_filter = filter( EstMdl_ , Y_dat ); % extract filtered state variables

111

112 % ... plotting the results

113 %

114 X_hat = x_filter (: ,1:3);

115 Phi_hat = EstMdl_.A(1:3 ,1:3);

116 k_hat = diag(EstMdl_.A(1:3 ,4:6));

117 b_hat = EstMdl_.C(1:11 ,1:3);

118 a_hat = diag(EstMdl_.C(1:11 ,4:14));

119 if (strcmp(flagg ,’NS’))

120 L_hat = p_hat (19);

121 end

122 Y_hat = (a_hat + b_hat*X_hat ’) ’;

123 RMSE_bps = 100.*( mean((Y-Y_hat).^2)).^(0.5);

124

125 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

126 plot(dates ,X_hat ,’Linewidth ’ ,2), legend(’Factor 1’, ’Factor 2’, ’Factor 3’),

127 date_ticks = datenum (1960:10:2020 ,1 ,1);

128 set(gca , ’xtick ’, date_ticks);

129 datetick(’x’,’mmm -yy’,’keepticks ’)

130 set(gca , ’FontSize ’, 30)

131 % if (strcmp(flagg ,’NS ’))

132 % print -depsc EstFactors_NS

133 % else

134 % print -depsc EstFactors_Emp

135 % end

136

137 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

138 plot(tau ,b_hat ,’Linewidth ’ ,2),

139 legend(’Loading 1’, ’Loading 2’, ’Loading 3’,’Location ’,’SE’),

140 xlabel(’Maturity (months)’), ylim([-1 1.25]) ,

141 xticks ([3 12:12:120] ’) , xticklabels ({tau})

142 if (strcmp(flagg ,’NS’))

143 title([’time -decay parameter = ’, num2str(L_hat)])

144 end

145 set(gca , ’FontSize ’, 30)

146 % if (strcmp(flagg ,’NS ’))

147 % print -depsc EstLoadings_NS

148 % else

149 % print -depsc EstLoadings_Emp

150 % end

151

152 disp(RMSE_bps)

153

154 %% ..............................

155 % ... Rotation matrices
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156 % ..............................

157 % ................................................

158 % ... rotating toward 2Y, 5Y and 10Y yields

159 % ................................................

160 NS_ = TSM; % create an instance of the TSM class

161 NS_.yields = Y; % populating the model with input data

162 NS_.tau = tau;

163 %NS_.mP_pre = [0;0;0];

164 NS_.DataFreq = 12;

165

166 NS_ = NS_.getDNS; % estimate Dynamic Nelson -Siegel model

167 % using OLS

168

169 FunErr2 = @(p,dat_) sum(sum((dat_ (:,1)-dat_ (:,2:end)*p).^2)); % calc SSR

170

171 p0 = [1;0;0]; % starting values - no constant , only slope coefficients

172 Aeq = [1 0 0]; % constraining the coefficient of the level factor to be =1

173 beq = 1;

174 lb = [0.99;0;0]; % just to help fmincon a bit

175 ub = [1.01;1;1];

176

177 lst = [3;6;11];

178 A_rotate = zeros(size(p0 ,1),size(p0 ,1));

179 for ( z=1:3 )

180 dat = [NS_.yields(:,lst(z,1)) NS_.beta ’];

181 [pHat] = fmincon(FunErr2 ,p0 ,[],[],Aeq ,beq ,lb,ub ,[],[],dat);

182 A_rotate(z,:) = pHat ’;

183 end

184

185 % ... double checking if the objective is achieved

186 X_rotate = A_rotate*NS_.beta;

187 b_rotate = NS_.B*inv(A_rotate);

188

189 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

190 subplot (3,1,1), plot(dates ,[NS_.yields (:,3) X_rotate (1,:) ’], ...

191 ’LineWidth ’ ,2),

192 date_ticks = datenum (1960:10:2020 ,1 ,1);

193 set(gca , ’xtick ’, date_ticks), title(’2 year’);

194 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’Obs.’,’Fit’,’Location ’,’SW’)

195 set(gca , ’FontSize ’, 20)

196 subplot (3,1,2), plot(dates ,[NS_.yields (:,6) X_rotate (2,:) ’], ...

197 ’LineWidth ’ ,2),

198 date_ticks = datenum (1960:10:2020 ,1 ,1);

199 set(gca , ’xtick ’, date_ticks), title(’5 year’),

200 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’Obs.’,’Fit’,’Location ’,’SW’)

201 set(gca , ’FontSize ’, 20)

202 subplot (3,1,3), plot(dates ,[NS_.yields (:,11) X_rotate (3,:) ’], ...

203 ’LineWidth ’ ,2),

204 date_ticks = datenum (1960:10:2020 ,1 ,1);

205 set(gca , ’xtick ’, date_ticks), title(’10 year’),

206 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’Obs.’,’Fit’,’Location ’,’SW’)

207 set(gca , ’FontSize ’, 20)

208 %print -depsc RotatedFactors2_5_10

209
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210 RMSE_rotate = 100*( mean((Y - (b_rotate*X_rotate) ’).^2)).^(1/2)

211 [NS_.RMSE;RMSE_rotate]

212

213 %% ...........................................................

214 % ... Building blocks of the yield curve

215 % ...........................................................

216 %

217 % Case A: 3-factor SRB model and the DNS model

218 %

219 SRB3_ = TSM;

220 DNS_ = TSM; % creating class instances

221

222 SRB3_.yields=Y; SRB3_.tau=tau; SRB3_.DataFreq =12;

223 DNS_.yields=Y; DNS_.tau=tau; DNS_.DataFreq =12; % allocating data

224

225 SRB3_ = SRB3_.getSRB3;

226 DNS_ = DNS_.getDNS; % estimate the model

227

228 RMSE_A = [ SRB3_.RMSE; DNS_.RMSE ]; % generating output

229 EIG_A = [ sort(real(eig(SRB3_.PhiP))); ...

230 sort(real(eig(DNS_.PhiP))) ];

231

232 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

233 subplot (2,1,1), plot(dates , [ SRB3_.Er(:,11) DNS_.Er(: ,11) ...

234 Y(: ,11)], ’LineWidth ’ ,2),

235 date_ticks = datenum (1960:10:2020 ,1 ,1);

236 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

237 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’SRB3’,’DNS’,’yield 10Y’ ,...

238 ’Location ’,’NW’)

239 set(gca , ’FontSize ’, 20)

240 title(’10-year term premium and 10-year observed yield’)

241

242 subplot (2,1,2), plot(dates , [SRB3_.TP(:,11) DNS_.TP(: ,11) ], ...

243 ’LineWidth ’ ,2),

244 date_ticks = datenum (1960:10:2020 ,1 ,1);

245 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

246 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’SRB3’,’DNS’ ,...

247 ’Location ’,’NW’)

248 set(gca , ’FontSize ’, 20)

249 title(’10-year expectations component ’)

250 print -depsc Case_A_Er_TP

251

252 %

253 % Case B: 3- and 4-factor SRB models

254 %

255 SRB3_ = TSM;

256 SRB4_ = TSM; % creating class instances

257

258

259 SRB3_.yields=Y; SRB3_.tau=tau; SRB3_.DataFreq =12;

260 SRB4_.yields=Y; SRB4_.tau=tau; SRB4_.DataFreq =12; % allocating data

261

262 SRB3_ = SRB3_.getSRB3;

263 SRB4_ = SRB4_.getSRB4; % estimate the model
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264

265

266 RMSE_B = [ SRB3_.RMSE; SRB4_.RMSE ]; % generating output

267 EIG_B = [ sort(real(eig(SRB3_.PhiP))); ...

268 sort(real(eig(SRB4_.PhiP))) ];

269

270 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

271 subplot (2,1,1), plot(dates , [ SRB3_.Er(:,11) SRB4_.Er(:,11) ...

272 Y(: ,11)], ’LineWidth ’ ,2),

273 date_ticks = datenum (1960:10:2020 ,1 ,1);

274 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

275 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’SRB3’,’SRB4’, ...

276 ’yield 10Y’,’Location ’,’NW’)

277 set(gca , ’FontSize ’, 20)

278 title(’10-year term premium and 10-year observed yield’)

279

280 subplot (2,1,2), plot(dates , [SRB3_.TP(:,11) SRB4_.TP(:,11) ], ...

281 ’LineWidth ’ ,2),

282 date_ticks = datenum (1960:10:2020 ,1 ,1);

283 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’),

284 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’SRB3’,’SRB4’, ...

285 ’Location ’,’NW’)

286 set(gca , ’FontSize ’, 20)

287 title(’10-year expectations component ’)

288 %print -depsc Case_B_Er_TP

289

290 %

291 % Case C: 3-factor SRB model with and without bias correction

292 %

293 SRB3_ = TSM;

294 SRB3_BC = TSM; % creating class instances

295

296 SRB3_.yields=Y; SRB3_.tau=tau; SRB3_.DataFreq =12;

297 SRB3_BC.yields=Y; SRB3_BC.tau=tau; SRB3_BC.DataFreq =12; % allocating data

298 SRB3_BC.biasCorrect = 1; % bias correction

299

300 SRB3_ = SRB3_.getSRB3;

301 SRB3_BC = SRB3_BC.getSRB3; % estimate the model

302

303 RMSE_C = [ SRB3_.RMSE; SRB3_BC.RMSE ]; % generating output

304 EIG_C = [ sort(real(eig(SRB3_.PhiP))); ...

305 sort(real(eig(SRB3_BC.PhiP_bc))); ];

306

307 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

308 subplot (2,1,1), plot(dates , [ SRB3_.Er(:,11) SRB3_BC.Er(:,11) ...

309 Y(: ,11)], ’LineWidth ’ ,2),

310 date_ticks = datenum (1960:10:2020 ,1 ,1);

311 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

312 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’SRB3’, ...

313 ’SRB3 bias corrected ’, ...

314 ’yield 10Y’,’Location ’,’NW’)

315 set(gca , ’FontSize ’, 20)

316 title(’10-year term premium and 10-year observed yield’)

317
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318 subplot (2,1,2), plot(dates , [ SRB3_.TP(:,11) SRB3_BC.TP(:,11)], ...

319 ’LineWidth ’ ,2),

320 date_ticks = datenum (1960:10:2020 ,1 ,1);

321 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

322 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’SRB3’, ...

323 ’SRB3 bias corrected ’, ...

324 ’Location ’,’NW’)

325 set(gca , ’FontSize ’, 20)

326 title(’10-year expectations component ’)

327 %print -depsc Case_C_Er_TP

328

329 %

330 % Case D: 3-factor SRB model with different assumptions on

331 % the mean of the short rate

332 %

333 SRB3_ = TSM; % creating class instances

334 SRB3_ma = TSM;

335

336 SRB3_.yields=Y; SRB3_.tau=tau; SRB3_.DataFreq =12; % allocating data

337 SRB3_ma.yields=Y; SRB3_ma.tau=tau; SRB3_ma.DataFreq =12;

338 SRB3_ma.mP_pre =[2.00;1.79; -1.19];

339

340 SRB3_ = SRB3_.getSRB3; % estimate the model

341 SRB3_ma = SRB3_ma.getSRB3;

342

343 RMSE_D = [ SRB3_.RMSE; SRB3_ma.RMSE ]; % generating output

344 EIG_D = [ sort(real(eig(SRB3_.PhiP))); ...

345 sort(real(eig(SRB3_ma.PhiP))) ];

346

347 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

348 subplot (2,1,1), plot(dates , [ SRB3_.Er(:,11) SRB3_ma.Er(:,11) ...

349 Y(: ,11)], ’LineWidth ’ ,2),

350 date_ticks = datenum (1960:10:2020 ,1 ,1);

351 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

352 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’SRB3’ ,...

353 ’SRB3 mean adjusted ’, ...

354 ’yield 10Y’,’Location ’,’NW’)

355 set(gca , ’FontSize ’, 20),

356 title(’10-year term premium and 10-year observed yield’)

357

358 subplot (2,1,2), plot(dates , [SRB3_.TP(:,11) SRB3_ma.TP(:,11)], ...

359 ’LineWidth ’ ,2),

360 date_ticks = datenum (1960:10:2020 ,1 ,1);

361 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

362 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’SRB3’, ...

363 ’SRB3 mean adjusted ’, ...

364 ’Location ’,’NW’)

365 set(gca , ’FontSize ’, 20),title(’10-year expectations component ’)

366 %print -depsc Case_D_Er_TP

367

368 %

369 % Case D: 3-factor SRB model against ACM and KW

370 %

371 SRB3 = TSM; % creating class instances



84 3 The Basic Yield Curve Modelling Set-up

372

373 SRB3.yields=Y; SRB3.tau=tau; SRB3.DataFreq =12; % allocating data

374

375 SRB3 = SRB3.getSRB3; % estimate the model

376

377

378 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

379 plot(dates , SRB3.TP(:,11), ’lineWidth ’ ,2)

380 hold on

381 plot(ACM(:,1), ACM(:,2), ’lineWidth ’ ,2)

382 hold on

383 plot(KW(:,1), KW(:,2), ’lineWidth ’ ,2)

384

385 date_ticks = datenum (1960:10:2020 ,1 ,1);

386 set(gca , ’xtick ’, date_ticks), ylabel(’(pct)’)

387 datetick(’x’,’mmm -yy’,’keepticks ’), legend(’SRB3’,’ACM’,’KW’, ...

388 ’Location ’,’NW’)

389 set(gca , ’FontSize ’, 20)

390 %print -depsc Case_E_Er_TP

391

392 %% ................................................

393 % ... Modelling yields at the zero lower bound

394 % ................................................

395

396 % ... plot of 1Y rates in EU, US, UK , JP

397 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

398 plot(Yield1Y (:,1), Yield1Y (:,2:end),’LineWidth ’ ,2),

399 date_ticks = datenum (1999:3:2020 ,1 ,1);

400 set(gca , ’xtick ’, date_ticks), title(’1 year yields ’);

401 datetick(’x’,’mmm -yy’,’keepticks ’),

402 legend(’EA’,’US’,’US’,’JP’)

403 set(gca , ’FontSize ’, 20)

404 %print -depsc EU_US_UK_JP_1Y_yields

405

406 % ... Calling the TSM class to estimate a short rate based (SRB) model

407 SRB = TSM; % create an instance of the TSM class

408 SRB.yields = Y; % populating the model with input data

409 SRB.tau = tau;

410 SRB.mP_pre = [];

411 SRB.DataFreq = 12;

412

413 % ... step 0: fix the parameters that need to be fixed

414 %

415 rL = 0.00; % preset effective lower bound

416

417 % ... step 1: estimate the 3-factors from the short rate based model

418 %

419 SRB = SRB.getSRB3;

420 X_ = SRB.beta; % factors: short rate , slope , curvature

421 B_ = SRB.B; % loading structure

422 Y_ = SRB.yields; % observed yields (also contained in Y)

423

424 % ... step2: estimate the shadow short rate and the shadow slope

425 %
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426 X_tmp = X_ ’;

427 p0 = X_tmp (:);

428 Aeq = zeros(nObs ,3* nObs);

429 Aeq (1:nObs ,2* nObs +1:end) = eye(nObs);

430 beq = X_(3,:) ’;

431

432 X_shadow = NaN(size(X_));

433 options_ = optimoptions(@fmincon ,’Algorithm ’,’sqp’ ,...

434 ’MaxIterations ’,1e8, ...

435 ’MaxFunctionEvaluations ’,1e8, ...

436 ’TolFun ’, 1e-4, ’TolX’, 1e-4, ...

437 ’display ’,’iter’);

438

439 FX_min = @(p) Yshadow( p, Y_, B_, rL );

440 [ pHat_sr ] = fmincon(FX_min , p0 ,[],[],Aeq ,beq ,[],[],[], options_);

441 alpha_ = pHat_sr (1:4 ,1);

442 X_shadow_hat = reshape(pHat_sr ,nObs ,3);

443

444 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

445 plot(dates , [ X_(1,:)’ X_shadow_hat (:,1) ],’LineWidth ’ ,2)

446 hold on

447 plot(BB_US_shadow_rate (:,1) ,[BB_US_shadow_rate (:,3), ...

448 BB_US_shadow_rate (:,2)], ...

449 ’LineWidth ’,2 )

450 % yyaxis right

451 % plot(BB_US_shadow_rate (:,1), -(BB_US_shadow_rate (:,4)) ,’:g’,...

452 % ’LineWidth ’,2)

453 date_ticks = datenum (1999:3:2020 ,1 ,1);

454 set(gca , ’xtick ’, date_ticks)

455 datetick(’x’,’mmm -yy’,’keepticks ’),

456 legend(’Short rate factor ’,’Shadow short rate’, ...

457 ’Bloomberg US shadow rate (Fed , Atlanta)’, ...

458 ’Bloomberg US shadow rate (NZ)’, ...

459 ’Location ’,’SW’)

460 set(gca , ’FontSize ’, 20)

461 ylabel(’Yield (pct)’)

462 % print -depsc Shadow_sr

463

464 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

465 plot(dates , [ X_shadow_hat ],’LineWidth ’ ,2)

466 date_ticks = datenum (1999:3:2020 ,1 ,1);

467 set(gca , ’xtick ’, date_ticks), title(’Short rates’);

468 datetick(’x’,’mmm -yy’,’keepticks ’),

469 legend(’Sr’,’Slope ’,’curvature ’)

470

471 %% functions

472 %

473 function [R,S,T,U,Mean0 ,Cov0 ,StateType] = pMap( p, flagg , tau )

474 %

475 % Parameter mapping function for MATLAB ’s SSM mudule

476 %

477 nTau = size(tau ,1);

478

479 Phi = [p(1) p(4) p(7) ;
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480 p(2) p(5) p(8) ;

481 p(3) p(6) p(9) ];

482

483 k = diag([p(10);p(11);p(12)]);

484

485 Sx = zeros (3,3);

486 Sx(1,1)=p(13); Sx(2,1)=p(14); Sx(2,2)=p(15);

487 Sx(3,1)=p(16); Sx(3,2)=p(17); Sx(3,3)=p(18);

488

489 if (strcmp(flagg ,’Emp’))

490 b = [ p(19:29 ,1) p(30:40 ,1) p(41:51 ,1) ];

491 elseif (strcmp(flagg ,’NS’))

492 L = p(19,1); p(20:51 ,1) =0;

493 b = [ ones(nTau ,1) ...

494 (1-exp(-L.*tau))./(L.*tau) ...

495 (1-exp(-L.*tau))./(L.*tau) - exp(-L.*tau)];

496 else

497 disp(’The variable flagg must take on either of the following values ’)

498 disp(’NS (Nelson -Siegel)’)

499 disp(’or, Emp (empirical model) ’)

500 end

501

502 a = diag(p(52:62 ,1));

503 Sy = diag(p(63:73 ,1));

504

505 % ... Assigning the parameters following MATLAB ’s notation

506 %

507 R = [ Phi k zeros(3,nTau -3); zeros(nTau ,3) eye(nTau) ];

508 S = [ Sx; zeros(nTau ,3) ];

509

510 T = [ b a; zeros(nTau ,3) eye(nTau) ];

511 U = [ Sy; zeros(nTau ,nTau) ];

512

513 % ... other assignments

514 Mean0 = [];

515 Cov0 = [];

516 StateType = [ 0 0 0 ones(1,nTau) ];

517 end

518

519 function [ err2 , X_shadow , y_shadow , err ] = Yshadow( p0 , Y_, B_, rL )

520 %

521 % calculating the sum of squared residuals from the static

522 % shadow short rate model set -up

523 %

524 nObs = size(Y_ ,1);

525

526 % ... Defining the shadow rate transformations

527 %

528 alfa_ = @(Xshdw ,zz) ( tanh(zz(1,1).* Xshdw (2,:)+zz(2,1)) ...

529 +3 )./2 .*( tanh( zz(3,1).*Xshdw (3,:)+zz(4,1) )+3 )./2;

530

531 yFit_ = @(yS_ ,alpha_ ,rL_) rL_+(yS_ -rL_)./(1-exp(-alpha_ .*(yS_ -rL_)));

532

533 % ... fixing some of the free parameters
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534 %

535 zz_ = [ -5.00; 1.00; 4.00; 1.00 ];

536

537 % ... calculating shadow yields

538 %

539 X_shadow = reshape(p0,nObs ,3) ’;

540 y_shadow = B_*X_shadow;

541 alpha = alfa_(X_shadow ,zz_);

542 yFit = yFit_(y_shadow ,alpha ,rL) ’;

543 err = Y_-yFit;

544 err2 = sum(sum(err .^2));

545

546 end
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Modelling Yields under the Q-measure

4.1 Introduction

In this chapter we will look at yield curve models that exclude arbitrage by construction. The treatment

is purposefully superficial, and it will focus on, and emphasise, the pure mechanics of the modelling

frameworks. A deep-dive into these models, and a full account of how the literature has evolved over

time, is beyond the purpose of these lecture notes, as also indicated by the title.

As a gentle introduction, a 4-factor Short Rate Based (SRB) model will be derived, based on Nyholm

(2018). Then we will move on to Joslin, Singleton, and Zhu (2011), a corner piece in the literature, and see

how they cut to the bone of the inner workings of term structure models.

4.2 A discrete-time 4-factor SRB model

Our purpose here is to illustrate how the standard linear modelling set-up (see, e.g., Duffie and Kan (1996),

Dai and Singleton (2000), and Ang and Piazzesi (2003)) can be used to derive a tailor-made discrete-time

arbitrage-free model that has a loading structure similar to that of a dynamic Svensson and Söderlind

(1997) model, but where the first factor can be interpreted as the short rate, rather than as the yield curve

level. Since this will result in a 4-factor model, we get the 3-factor model for free, so to say, since we can

reduce the factor space by simply omitting the forth factor and forth factor loading.

Within the continuous-time setting Christensen, Diebold, and Rudebusch (2011) have shown how to

maintain the parametric loading structure of the Nelson and Siegel (1987), while ensuring that arbitrage

constraints are fulfilled.1 Discrete-time versions of the same model have been derived previously (Niu and

Zeng (2012) and Li, Niu, and Zeng (2012)). Christensen, Diebold, and Rudebusch (2011) show that five

factors are needed to generate an arbitrage-free term structure model, where the factor loadings match

precisely those of Svensson and Söderlind (1997). Instead of providing an exact fit, here we derive a

parsimonious four-factor model with a closed-form loading structure that maintain the characteristics of

1 See also, Krippner (2013) and Diebold and Rudebusch (2013).
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the Svensson and Söderlind (1997) model, where only one time-decay is used (recall that the original

Svensson and Söderlind (1997) model relies on two time-decay parameters to define its loading structure).

As before, let Xt denote the vector of the modelled yield curve factors, at time t. Furthermore, let

the dynamics of Xt be governed by vector autoregressive (VAR) processes of order one, under both the

empirical measure, P, and the pricing measure, Q:

Xt = kP + ΦP ·Xt−1 +ΣPεPt , εPt ∼ N(0, 1) (4.1)

Xt = kQ + ΦQ ·Xt−1 +ΣQεQt , εQt ∼ N(0, 1). (4.2)

with ΣΣ′ = Ω being the variance of the residuals, and it is assumed that ΣP = ΣQ. It is noted that we

do not use the mean-adjusted version of the VAR model here, the reason for this will become clear at the

end of the section.

The risk free one-period short rate is assumed to be a function of Xt, such that:

rt = ρ0 + ρ′1Xt. (4.3)

In the model that we derive, we want our factors, X, to have interpretations as: the short rate, the slope,

and curvature one and two. Given that the first factor is the short rate, we impose the following constraints

on (4.3): ρ0 = 0 and ρ1 = [1, 0, 0, 0]′.

As in the derivation of the discrete-time version of the Vasicek (1977), in one of the previous sections

of these lecture notes, we now impose absence of arbitrage on the model by introducing the unique pricing

mechanism, that governs all traded assets:

Pt,τ = Et [Mt+1 · Pt+1,τ−1] (4.4)

The idea here is that when the bond matures at time T , its value is know with certainty, since it is default-

free: the bond pays its principal value on that day, so PT,0 = 1. At any time t + j before maturity, the

price of the bond can therefore be found as the one-period discounted-value of the price at time t+ j + 1,

all the way back to time t. Discounting is done using the stochastic discount factor (also called the pricing

kernel), which is denoted by Mt, and this quantity is assumed to be given by:

Mt+1 = exp

(
−rt −

1

2
λ′tλt − λ′tεPt+1

)
(4.5)

We recognise the uni-variate case of this expression, from when we derived the Vasicek (1977) model, but

now we are dealing with a multi-factor model, since X contains four factors. So, we also bring the expression

for the time-varying market price of risk into the multi-variate domain by specifying:
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λt = λ0 + λ1 ·Xt, (4.6)

with λt being of dimension (4 × 1) in our application, because we have four factors, λ0 is of dimension

(4× 1), and λ1 is a matrix of dimension (4× 4).

It is recalled that:

yt,τ = −1

τ
log(Pt,τ ), (4.7)

and that we can write the yield curve expression as a linear (plus a constant, i.e. affine) function:

yt,τ = −Aτ
τ
− B′τ

τ
Xt. (4.8)

The bond price is therefore exponential affine in terms of Aτ and Bτ :

Pt,τ = exp (Aτ +B′τXt) . (4.9)

To derive closed-form expressions for Aτ and Bτ , the fundamental pricing equation is invoked (4.5):

Pt,τ = Et [Mt+1 · Pt+1,τ−1] (4.10)

= Et
[
exp

(
−rt −

1

2
λ′tλt − λ′tεPt+1

)
· exp

(
Aτ−1 +B′τ−1Xt+1

)]
. (4.11)

The expression for Xt+1 (see equation 4.1) is substituted:

Pt,τ = Et
[
exp

(
−rt −

1

2
λ′tλt − λ′tεPt+1

)
· exp

(
Aτ−1 +B′τ−1

(
kP + ΦPXt +ΣεPt+1

))]
, (4.12)

and, the terms are then separated into two groups: one to which the expectations operator should be

applied, i.e. t+ 1 terms, and another group, which are known at time t:

Pt,τ =exp

(
−rt −

1

2
λ′tλt +Aτ−1 +B′τ−1k

P +B′τ−1Φ
PXt

)
·Et
[
exp

(
−λ′tεPt+1 +B′τ−1Σε

P
t+1

)]
. (4.13)

The question is then, how can we calculate the expectations part of (4.13):

Et
[
exp

(
−λ′t +B′τ−1Σ

)
εPt+1

]
. (4.14)

To this end, the moment generating function of the multivariate normal distribution is used. Since εP ∼

N(0, I), it is know that:



92 4 Modelling Yields under the Q-measure

E[exp(a′εP)] = exp

(
1

2
a′ · I · a

)
, (4.15)

so, the expectation in (4.13) can be calculated, using a′ = (−λ′t +B′τ−1Σ), as:

exp

[
1

2
(−λ′t +B′τ−1Σ) · I · (−λ′t +B′τ−1Σ)′

]
=exp

[
1

2
(−λ′t +B′τ−1Σ) · I · (−λt +Σ′Bτ−1)

]
=exp

[
1

2

(
λ′tλt − λ′tΣ′Bτ−1 −B′τ−1Σλt +B′τ−1ΣΣ

′Bτ−1

)]
, (4.16)

and, since B′τ−1Σλt is a scalar, and for a scalar h, we know that h = h′, so B′τ−1Σλt = λ′tΣ
′Bτ−1. We can

then write:

Et
[
exp

(
−λ′t +B′τ−1Σ

)
εPt+1

]
=exp

[(
1

2
λ′tλt −B′τ−1Σλt +

1

2
B′τ−1ΣΣ

′B′τ−1

)]
. (4.17)

This term is then reinserted into (4.13), giving:

Pt,τ = exp

(
−rt +Aτ−1 +B′τ−1k

P +B′τ−1Φ
PXt −B′τ−1Σλt +

1

2
B′τ−1ΣΣ

′B′τ−1

)
. (4.18)

It is recalled that rt = ρ′1Xt, and that λt = λ0 + λ1Xt. Inserting these expressions into (4.18), gives:

Pt,τ = exp
(
−ρ′1Xt +Aτ−1 +B′τ−1k

P +B′τ−1Φ
PXt

−B′τ−1Σ (λ0 + λ1Xt) +
1

2
B′n−1ΣΣ

′B′τ−1

)
. (4.19)

Reorganising this expression into terms that load on Xt and terms that do not, help matching coefficients

with respect to equation (4.9):

Pt,τ = exp
(
Aτ−1 +B′τ−1

(
kP −Σλ0

)
+

1

2
B′τ−1ΣΣ

′B′τ−1

+B′τ−1Φ
PXt − ρ′1Xt −B′τ−1Σλ1Xt

)
, (4.20)

which is:

Pt,τ = exp

(
Aτ−1 +B′τ−1

(
kP −Σλ0

)
+

1

2
B′τ−1ΣΣ

′B′τ−1

+
[
B′τ−1

(
ΦP −Σλ1

)
− ρ′1

]
Xt

)
. (4.21)
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Matching the coefficients of (4.21) with those of (4.9) establishes the recursive formulas for Aτ and Bτ :

Aτ = Aτ−1 +B′τ−1k
Q +

1

2
B′τ−1ΣΣ

′B′τ−1 (4.22)

B′τ = B′τ−1Φ
Q − ρ′1 (4.23)

with kQ = kP − Σλ0, and ΦQ = ΦP − Σλ1. Recall that ρ0 = 0 in our model setup. Using recursive

substitution, we realise that the expression for B′n also can be written in the following way:2

Bτ = −

[
τ−1∑
k=0

(
ΦQ)k]′ · ρ1. (4.24)

It is convenient to write the loading structure in this way, when we want to find a closed-form solution for

Bτ , because the expression in (4.24) is the sum of a matrix power series, and we know that this can be

solved if ΦQ comes from a stationary VAR model.

The last task remaining is then to find a ΦQ matrix that, when inserted in (4.24) gives us loadings that

are as similar as possible to the ones appearing in the Svensson and Söderlind (1997), while still imposing

the constraints mentioned above, that ensures that the first factor is the short rate. So, let’s start the

guessing game. What happens, for example, if we use the following matrix?

ΦQ =



1 1− γ 1− γ 1− γ

0 γ γ − 1 γ − 1

0 0 γ γ − 1

0 0 0 γ


. (4.25)

A closed-form expressions for Bτ can then be derived by first finding
(
ΦQ)k:

2 We see this by the use of an example. For τ = 3, we have:

B′1 = −ρ′1
B′2 = B′1Φ

Q − ρ′1 = −ρ′1ΦQ − ρ′1
B′3 = B′2Φ

Q − ρ′1 = (−ρ′1ΦQ − ρ′1)ΦQ − ρ′1

= −ρ′1
(
ΦQ
)2
− ρ′1ΦQ − ρ′1

= −ρ′1
((

ΦQ
)2

+
(
ΦQ
)1

+
(
ΦQ
)0)

= −ρ′1

[
2∑
k=0

(
ΦQ
)k]

so,

B3 = −

[
2∑
k=0

(
ΦQ
)k]′

ρ1,

which generalises to equation (4.24).
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(
ΦQ)k =



1 1− γk −kγk−1(γ − 1) −k2γ
k−2

(
(k + 1)γ2 − 2kγ + k − 1

)
0 γk kγk−1(γ − 1) k

2γ
k−2

(
(k + 1)γ2 − 2kγ + k − 1

)
0 0 γk kγk−1(γ − 1)

0 0 0 γk


, (4.26)

and then by substituting (4.26) into (4.24), we get:

Bτ = −



τ∑τ−1
k=0 1− γk∑τ−1

k=0 −kγk−1(γ − 1)∑τ−1
k=0 −

k
2γ

k−2
(
(k + 1)γ2 − 2kγ + k − 1

)


. (4.27)

Solving (4.27) gives:3:

Bτ = −



τ

τ − 1−γτ
(1−γ)

−τγτ−1 + 1−γτ
(1−γ)

− 1
2τ(τ − 1)(γ − 1)γτ−2


. (4.28)

An expression for the yield curve at time t is then obtained if Yt collects yt,n ∀n by increasing maturity,

and if a = −An/n and b = −B′n/n are defined similarly. The expression for the yield curve observed at

time t is then:

Yt = a+ bXt +ΣY ut. (4.29)

with:

3 The first entry of (4.27) follows immediately, the second entry uses
∑τ−1
k=0 x

k = 1−xτ
1−x , the third and fourth

entries can be found by consecutive substitution. For example, for τ = 5 the third entry of (4.27) is: 4γ4 − γ3 −
γ2 − γ1 − γ0, which generalizes to (τ − 1)γτ−1 −

∑τ−2
k=0 γ

k. Similarly, the fourth entry of (4.28) for τ = 5 is:
−(0 + 1(γ − 1)γ0 + 3(γ − 1)γ1 + 6(γ − 1)γ2 + 10(γ − 1)γ3), which generalizes to − 1

2
τ(τ − 1)(γ − 1)γτ−2.
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b =



1

1− 1−γn
(1−γ)·n

−γn−1 + 1−γn
(1−γ)·n

− 1
2 (n− 1)(γ − 1)γn−2


. (4.30)

4.2.1 The relationship between the SRB model and the Joslin, Singleton and Zhu (2011)

framework

Here we will briefly look at Joslin, Singleton, and Zhu (2011) (JSZ). This is a core paper in the literature

because it shows that many of the existing model parametrisations have the same core, and are in fact

identical upto a rotation. They also present an algorithm to estimate arbitrage-free term structure models

that is fast and that converges effortlessly. In addition, they provide insights on what to expect in terms

of forecasting performance of certain term structure models, and why some models have equal forecasting

performance (to the degree of uncertainty present in the data). It is a true treat for the reader - if only the

paper was easier to understand, it would be perfect.

From my reading of Joslin, Singleton, and Zhu (2011), the key takeaways are:

1. Gaussian dynamic term structure models (GDTSM) can be parameterised such that the paranmeters

that govern the P measure, and thus the P-measure forecasts of the yield curve factors, X, do not

appear in the measurement-error density. This means that the P- and Q-measure parameters can be

estimated separately.

2. It also means that constraints imposed under Q do not affect the dynamics of the yield curve factors

under P, so no-arbitrage constraints cannot help in providing better model forecasts.

3. For a N-factor GDTSM the following parameters need to be specified:

3.1. rQ∞, the long-run mean of the short rate under Q

3.2. γQ, mean reversion speed (eigenvalues) of the factor dynamics under Q. Other notation uses λ for

this parameter, but we have reserved λ for the market price of risk.

3.3. ΣP, the conditional covariance matrix of the yield factors from the VAR model governing their

dynamics.

4. The JSZ model characterization framework is based on the idea ’similar’ matrices, known from linear

algebra, where similarity is defined on the basis of the Jordan form. JSZ apply this idea to GDTSMs:

if a given model’s Q−dynamics can be re-written in Jordan form, with ordered eigenvalues, then the

model is identical (up to a rotation) to the JSZ canonical form.

If a comparison is made to the notation used in Joslin, Singleton, and Zhu (2011), it may be relevant

to note that they specify VAR models in difference form. Throughout the lecture notes, we have looked at
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VAR models in level form. Although it is not a big deal, I will continue using the level form here, and thus

rewrite (and adapt their notation) to what we have been using so far.4

Let’s start by looking at the issue from an intuitive angle on the basis of a general VAR model for the

yield curve factors under the Q-measure. As in Joslin, Singleton, and Zhu (2011) we choose a specific set

of yield curve factors that are formed as linear combinations of yields. JSZ refer to these factors as being

“portfolios of yields” i.e. implying that they can be obtained by applying a weighting matrix to the yield

curve data in the following way5:

Xt = W · yt. (4.31)

According to this definition, any linear combination of yields qualify, thus also principal components. We

continue by writing a general VAR model for these factors:

Xt = kQ + ΦQ ·Xt−1 +ΣQut, (4.32)

We know that ΦQ governs the dynamics of the VAR model under the Q-measure, and thus the shape of

the yield loadings bτ and the constant, atau. But, what are the core components of this matrix? If we look

at the eigenvalue decomposition of ΦQ, the eigenvalues express the degree of persistency of the matrix, i.e.

how fast (or slow) it converges to its steady-state (assuming, as always, that the VAR is stationarity). The

eigenvectors of Φ (not of X, just to be clear) can be interpreted as the “direction” the matrix points in, or

the space that it spans. This is a very vague statement, I know, and I apologies not to be able to explain it

better, but you know, we typically do not use these eigenvectors for anything else than multiplying them

on the diagonal matrix of eigenvalues, when we e.g. want to find the s-step ahead projection matrix.6 But

in the current context, it may be enough to be vague to get the overall intuitive understanding of the

idea proposed in Joslin, Singleton, and Zhu (2011). Vague or not, let’s continue. We can naturally imagine

many different sets of yield curve factors (one for each occasion), and all sets spanning different directions,

and all formed according to (4.31). Some of these sets could, for example, be (a) the three first principal

components; (b) level, slope, and curvature; (c) short rate slope and curvature; and (d) the 3-month yield,

the 3-year yield, and the 10-year yield. The crux of JSZ is that all these possible factors definitions, i.e.

also our examples in (a)-(d), can be converted (or rotated) into a common single basis form. So, in fact, the

various factors definitions, and their associated models, are all (just) variations over a single core model;

all having identical properties, but appearing to be different.

4 A VAR model written in difference form looks like this: ∆Xt = k + Φ̃Xt−1 + Σet, which can be written as,
Xt −Xt−1 = k + Φ̃Xt−1 +Σet, and as Xt = k + Φ̃Xt−1 +Xt−1 +Σet. So, the difference between the difference
and level forms is that Φ = Φ̃+ I, where Φ refers to the autoregressive matrix in the level form.

5 Joslin, Singleton, and Zhu (2011) denote the yield factors by P, but we continue by using X to denote the factors.
6 Recall from our discussion of the term premia in a previous chapter, that we can calculate the s-step ahead

projection of the VAR as the s’th power of the diagonal matrix containing the eigenvalues, pre- and post-
multiplied by the eigenvectors.
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To express the GDTSM in its purest form, Joslin, Singleton, and Zhu (2011) rely on the Jordan

decomposition of ΦQ. The Jordan decomposition is a generalisation of the eigenvalue decomposition, see e.g.

Hamilton (1994)[pp.730-31], in that it explicitly handles repeated eigenvalues. An eigenvalue decomposition

can still be successfully completed, even if there are repeated eigenvalues, as long as the eigenvectors form

a full-rank matrix. But this is not guaranteed to all ways be the case, hence the generalisation represented

by the Jordan decomposition (formulas [A.4.26] and [A.4.27] from Hamilton (1994)):

J =



J1 0 · · · 0

0 J2 · · · 0

...
... · · ·

...

0 0 · · · Jn


(4.33)

and

Ji =



γi 1 0 · · · 0

0 γi 1 · · · 0

0 0 γi · · · 0

...
...

... · · ·
...

0 0 0 . . . γi


(4.34)

where the i’th eigenvalue is denoted by γi. Similarly to the eigenvalue decomposition, the Jordan

decomposition is given by:

ΦQ = V · ΦJ · V −1. (4.35)

To facilitate the rotation from the Jordan-form to any other observational equivalent model, we start

with the VAR model:

XJ
t = kJ + ΦJ ·XJ

t−1 +ΣJeJt , (4.36)

where J refers to the Jordan-form. A general rotation of this VAR model is implemented below:
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Xt = N +M ·Xj
t

= N +M ·
(
kJ + ΦJ ·XJ

t−1 +ΣJet
)

= N +M · kJ +M · ΦJ ·XJ
t−1 +M ·ΣJet

= N +M · kJ +M · ΦJ ·M−1 · (Xt−1 −N) +M ·ΣJet

= N −M · ΦJ ·M−1 ·N +M · kJ +M · ΦJ ·M−1 ·Xt−1 +M ·ΣJet

=
(
I −MΦJM−1

)
N +MkJ︸ ︷︷ ︸

kQ

+MΦJM−1︸ ︷︷ ︸
ΦQ

·Xt−1 +MΣJ︸ ︷︷ ︸
ΣQ

et

= kQ + ΦQ ·Xt−1 +ΣQet. (4.37)

Line 4 follows from line 1, since Xt = N +M ·Xj
t ⇔ Xj

t = M−1 · (Xt −N).

We know from (4.3) that the short rate depends on the yield curve factors. In the SRB model this link

is simply defined by the parameter constraints ρ0 = 0 and ρ1 = [1, 0, . . . , 0]′. However, for other factors,

ρ0 and ρ1 contain parameters that need to be estimated. So, we need also to show how the introduced

rotation affects the short rate equation:

rt = ρJ0 + ρJ1X
j
t

= ρJ0 + ρJ1M
−1 (Xt −N)

= ρJ0 − ρJ1M−1 ·N︸ ︷︷ ︸
ρ0

+ ρJ1M
−1︸ ︷︷ ︸

ρ1

·Xt

= ρ0 + ρ1Xt. (4.38)

With this behind us, we can now show that the SRB-model developed in section 4.2 is a constrained

member of the general family of Gaussian dynamic term structure model derived by Joslin, Singleton, and

Zhu (2011).7

Let J be the Jordan matrix, and V be a rotation matrix such that equation (4.25) can be reformulated

as:

ΦQ = V · J · V −1. (4.39)

Choosing V to be:

7 This is not overly surprising since the SRB model is a generalization of the arbitrage-free Nelson-Siegel model
suggested by Christensen, Diebold, and Rudebusch (2011) (CDR), and since Joslin, Singleton, and Zhu (2011)
show that the CDR model is a constrained member of the JSZ family.
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V =



1 −(γ − 1)2 γ − 1 −1

0 γ2 − 2 ∗ γ + 1 1− γ 1

0 0 γ − 1 −2

0 0 0 1


, (4.40)

implies that:

J =



1 0 0 0

0 γ 1 0

0 0 γ 1

0 0 0 γ


, (4.41)

Since (4.41) is in Jordan form with repeated eigenvalues, there exists a mapping between the Q−dynamics

I propose above in (4.25) and the framework suggested by JSZ. The proposed SRB model is therefore a

constrained member of the JSZ family of models.8

4.2.2 The relationship between the 4-factor SRB model and the Svensson-Söderlind model

Since the 4-factor SRB model aims to replicate the Svensson and Söderlind (1997) loading structure, as

closely as possible, but by the use of a single time-decay parameter, γ, it may be relevant to draw a

comparison between the two models.

It is recalled that the Svensson-Soderlind loadings are given by:

H =



1

1−e−κ1n
κ1n

1−e−κ1n
κ1n

− e−κ1n

1−e−κ2n
κ2n

− e−κ2n


, (4.42)

and that the loading structure of the SRB model is given by B = Bn/n, where B is given by equation

(4.28):

8 The restriction of repeated eigenvalues, compared to the canonical JSZ form, is not rejected by the data used in
the paper at a 5% level, using a likelihood ratio test.
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B = −



1

1− 1−γn
(1−γ)·n

−γn−1 + 1−γn
(1−γ)·n

− 1
2 (n− 1)(γ − 1)γn−2


. (4.43)

Figure 4.2.2 compares the loading structures of the Svensson and Söderlind (1997) and the SRB models. The

shape parameter of the SRB model is set to γ = 0.945, and the two Svensson-Söderlind shape parameters

take on the values κ1 = 0.0381 and κ2 = 0.1491 (similar to what is found on US data). The loadings for

the first factor are not shown in the figure, as they equal 1 for both models, across the included maturities.

The first panel in the figure shows the loadings for the slope factor; and to facilitate easy comparison, the

loading of the Svensson-Söderlind model is rotated to match that are the SRB model: let Hslope be the

original slope loading for the Svensson-Söderlind model, panel 1 then plots 1 − Hslope. The second and

third panels compare the loadings for the first and second curvature loadings. Returning to the first panel.

It shows that the loadings for the slope factor are quite similar across the two models, although the SRB

loading assumes slightly higher values throughout the maturity spectrum, and also seems to arch upwards

a bit more than the Svensson-Söderlind loading does. Level differences between the loading structures can

naturally be subsumed by the corresponding factor values, so the shape attained by the loadings are of

greater importance for the relative comparison between the models. Similarly, the second and the third

panels show relatively good correspondence between the curvature loadings of the two models. Panel 2

indicates that the SRB model loading peaks around a maturity of 30 months, while the corresponding

Svensson-Söderlind loading peaks around 40 month.

To test the impact of the detected differences in the loading structures, as documented above, the

models are fitted to the US data used in other sections of the lecture notes. Table 4.2.2 documents that

both models produce very low root mean squared errors and that the added flexibility of the Svensson-

Söderlind model, via its reliance on two shape parameters, κ1 and κ2 (see equation (4.42)), as opposed

to the one used by the SRB model (γ), gives it an economically insignificant edge of 1 basis points on

average. The worst fitted maturity of the SRB model is the 1-year segment with a RMSE of 4.7 basis

points, and the average RMSE across the eleven included maturities is 2.68 basis points. In comparison,

the Svensson-Söderlind model produces the worst RMSE at the 2-year segment of 3.0 basis points, with

the average RMSE of 1.58 basis points across the included maturities.
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The figure compares the loading structures of the Svensson-Soderlind and the SRB models. The
shape parameter of the SRB model is γ = 0.945, and the two Svensson-Soderlind shape parameters
are estimated to be κ1 = 0.0381 and κ2 = 0.1491. The loadings for the first factor are not shown as
they equal 1 for both models across the included maturities. The first panel shows the loadings for the
slope factor, and to facilitate the comparison, the Svensson-Soderlind loading structure is rotated, to
match that of the SRB model, and this is done in the following way: Let Hslope be the original slope
loading for the Svensson-Soderlind model, panel 1 then plots 1−Hslope. The second and third panels
compare the loadings for the first and second curvature loadings.

Fig. 4.1. Loading Structures

3m 1y 2y 3y 4y 5y 6y 7y 8y 9y 10y Average

SRB Model 2.8 4.7 4.1 2.5 1.6 2.3 2.3 2.1 2.0 1.5 3.4 2.6

Svensson-Söderlind 0.3 2.6 3.0 2.0 0.7 1.4 1.9 1.6 0.8 0.7 2.3 1.5

The table shows the root mean squared errors in basis points of the SRB and the Svensson and
Söderlind (1997) models when estimated using monthly US yield curve data covering the period
from January 1961 to November 2017. Data are observed at maturities spanning 3 months to 10
years. The shape parameter of the SRB model is γ = 0.945, and the two Svensson-Söderlind shape
parameters are estimated to be κ1 = 0.0381 and κ2 = 0.1491.

Table 4.1. Root Mean Squared Errors (basis points)

4.3 Appendix: MATLAB code

4.3.1 Yield curve model estimation via the SSM toolbox

filename: Modelling yields under Q.m
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1 %% Modelling yields under Q

2 % All we do here is to plot the loading structures of the Svensson -

3 % Soderlind and the 4-factor SRB models

4 %

5

6 tau = ( 1:1:120 )’;

7 nTau = size(tau ,1);

8

9 Bfunc_SS = @(lambda_ ,tau_ ,nTau_) ...

10 [ ones(nTau_ ,1) (1-exp(-lambda_ (1,1).*tau_))./ (lambda_ (1,1).*tau_) ...

11 (1-exp(-lambda_ (1,1).*tau_))./( lambda_ (1,1).*tau_)-exp(-lambda_ (1,1).*tau_) ...

12 (1-exp(-lambda_ (2,1).*tau_))./( lambda_ (2,1).*tau_)-exp(-lambda_ (2,1).*tau_) ];

13

14

15 Bfunc_SRB4 = @(lambda_ ,tau_ ,nTau_) ...

16 [ ones(nTau_ ,1) 1-(1-lambda_ .^tau_)./((1 - lambda_).*tau_) ...

17 -(lambda_ .^(tau_ -1))+(1- lambda_ .^tau_)./((1 - lambda_).*tau_) ...

18 -0.5.*(tau_ -1).*( lambda_ -1).* lambda_ .^(tau_ -2) ];

19

20 L_SS = [ 0.0381; 0.1491 ];

21

22 L_SRB4 = 0.945;

23

24 B_SS = Bfunc_SS( L_SS , tau , nTau );

25 B_SRB4 = Bfunc_SRB4( L_SRB4 , tau , nTau );

26

27 tau_plot = [3 12:12:120] ’;

28 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

29 subplot (3,1,1), plot( tau , 1-B_SS (:,2) , ...

30 ’LineWidth ’ ,2), ylim ([0 1]), title(’Slope’),

31 ylabel(’Value ’), set(gca , ’FontSize ’, 20)

32 hold on

33 subplot (3,1,1), plot(tau ,B_SRB4 (:,2) , ...

34 ’LineWidth ’ ,2), grid ’on’

35 xticks(tau_plot),xticklabels(tau_plot)

36 legend(’Svensson -Soderlind ’,’4-factor SRB’,’Location ’,’SE’)

37

38 subplot (3,1,2), plot( tau , B_SS (:,3) , ...

39 ’LineWidth ’ ,2), ylim ([0 0.5]), title(’Curvature 1’),

40 ylabel(’Value ’), set(gca , ’FontSize ’, 20)

41 hold on

42 subplot (3,1,2), plot(tau ,B_SRB4 (:,3) , ...

43 ’LineWidth ’ ,2), grid ’on’

44 xticks(tau_plot),xticklabels(tau_plot)

45

46 subplot (3,1,3), plot( tau , B_SS (:,4) , ...

47 ’LineWidth ’ ,2), ylim ([0 0.5]), title(’Curvature 2’),

48 ylabel(’Value ’), set(gca , ’FontSize ’, 20)

49 hold on

50 subplot (3,1,3), plot(tau ,B_SRB4 (:,4) , ...

51 ’LineWidth ’ ,2), grid ’on’

52 xticks(tau_plot),xticklabels(tau_plot)

53 print -depsc Loadings_SS_SRB4
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Model implementation

5.1 Introduction

In addition to the modelling explanations provided so far in the lecture notes, it is also important to discuss

how practical implementation is achieved. When looking at a model on the internet or in a paper (here I

am of course referring to a term structure model), it is not always clear how the authors manage to apply

the model to data, and how they obtain the relevant parameter estimates. The aim of the current section

is therefore to discuss practical issues, supported by step-wise implementation guidelines.

5.2 Implementing the Joslin, Singleton and Zhu (2011) model

Although the MATLAB code for estimating the Joslin, Singleton, and Zhu (2011) model is available on

the internet1 we still choose to implement the model here. Our implementation will most likely be less

efficient, compared to the code made available by the authors. The JSZ code available on the net typically

converges within seconds - this is hard to beat, and originates from the clever step-wise estimation approach

suggested by Joslin, Singleton, and Zhu (2011). We will also implement the model in a step-wise fashion,

but integrate the code into out TSM-class. While it may seem as poor judgement not simply to use what

is already available on the net, in our context, where we may want to include exogenous variables and to

do conditional projections, we would anyway have to adapt the JSZ code to our particular needs. So, in

the end, it may be easier (and more fun) to implement the model our selves.

In section 4.2.1 we met the JSZ model, and saw how the SRB model is a constrained member of the

of JSZ family. Here we will take a deep-dive and present the model parameters that need to be estimated

and how we achieve model convergence.

Following the traditional linear yield curve modelling set-up the three factors included in the Joslin,

Singleton, and Zhu (2011) model are governed by VAR(1) dynamics. In their paper JSZ write up the

dynamics in difference form, we will however continue using the level-form as we have done throughout the

1 See, http://www-bcf.usc.edu/ sjoslin/.
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lecture notes:

Xt = kP + ΦP ·Xt−1 +ΣePt (5.1)

Xt = kQ + ΦQ ·Xt−1 +ΣeQt (5.2)

rt = ρ0 + ρ1 ·Xt (5.3)

where rt is a linear function of the factors, and the residual covariance is given by ΣΣ′. JSZ normalise

their model by requiring that ΦQ is in Jordan form, i.e.

ΦQ = J(γQ) =



J1 0 · · · 0

0 J2 · · · 0

...
... · · ·

...

0 0 · · · Jn


(5.4)

and

Ji =



γQi 1 0 · · · 0

0 γQi 1 · · · 0

0 0 γQi · · · 0

...
...

... · · ·
...

0 0 0 . . . γQi


(5.5)

where the i’th eigenvalue is denoted by γQi . With this in place, it turns out that the likelihood function can

be partitioned in a convenient way:

f(yt|yt−1; θ) = f(yt|Xt, Σ
P
X , ρ0, ρ1; γQ, kQ∞, Σy)︸ ︷︷ ︸

translates factors into yields

× f(Xt|Xt−1; kP, ΦP, ΣP
X)︸ ︷︷ ︸

evolves factors over time

(5.6)

where the parameters to be estimated, θ =
{
γQ, kQ∞, Σy, Σ

Q
X , k

P, ΦP, ΣP
X , ρ0, ρ1

}
, are neatly separated into

one group that converts yield curve factors into yield, i.e. the Q-measure parameters, and the parameters

that cater for the time-series evolution of the factors under the empirical P-measure. As a consequence,

our traditional state-space set-up:

yτ = aτ + bτ ·Xt +Σyut (5.7)

Xt = kP + ΦP ·Xt +ΣP
Xe

P
t (5.8)
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can be broken down into two distinct operations where, first, the state equation is estimated, and second,

the observation equation is estimated. From (4.22) and (4.24) we know that the no-arbitrage restriction

imposes the following functional form on the parameters that enter the observation equation:

Aτ = Aτ−1 +B′τ−1k
Q +

1

2
B′τ−1ΣΣ

′B′τ−1 (5.9)

Bτ = −

[
τ−1∑
k=0

(
ΦQ)k]′ · ρ1, (5.10)

and

aτ =
Aτ
τ

bτ =
Bτ
τ
.

In addition, the JSZ normalisation implies the following parameter constraints:

rt = ρ0 + ρ′1 ·Xt,

ρ0 = 0,

ρ1 = ι, (5.11)

kQ =



kQ∞

0

...

0


. (5.12)

With these constraints and (5.4) exact identification of the model is achieved. In practise this means that we

in some sense uncover the structural parameters that govern the yield curve dynamics and cross sectional

behaviour, at its most fundamental level. It is noted that kQ∞ is the long-run constant for the short rate

under the Q-measure, such that the long-run mean is rQ∞ =
−kQ∞
γQ
1

, when γQ1 is not a repeated root.

As we saw in section 4.2.1 JSZ use principal components as the staring point for setting up their model.

So, together with (5.2) the dynamics of the PCA factors, P, can be written in the following way, where W

denote the PCA weights:

Pt = W · yt. (5.13)

To be clear about the notation used, we denote by aJ,τ and bJ,τ the constant and the factor loadings for

the yield curve model where the underlying process for Xt is in its most fundamental form, i.e. where ΦQ

is in Jordan form:
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E[yt] = aJ,τ + bJ,τ ·Xt. (5.14)

Using (5.13) the PCA based model can now be written in terms of the parameters that define the Jordan

basis form:

Pt = W · E[yt]

= W · (aJ,τ + bJ,τ ·Xt)

= W · aJ,τ +W · bJ,τ ·Xt

m

W · bJ,τ ·Xt = Pt −W · aJ,τ

Xt = (W · bJ,τ )
−1 · Pt − (W · bJ,τ )

−1 ·W · aJ,τ

= (W · bJ,τ )
−1 · (Pt −W · aJ,τ ) (5.15)

To complete the model, such that it can be estimated, the expression above is inserted into (5.14):

E[yt] = aJ,τ + bJ,τ · (W · bJ,τ )
−1 · Pt − bJ,τ · (W · bJ,τ )

−1 ·W · aJ,τ

= aJ,τ − bJ,τ · (W · bJ,τ )
−1 ·W · aJ,τ + bJ,τ · (W · bJ,τ )

−1 · Pt

=
(
I − bJ,τ · (W · bJ,τ )

−1 ·W
)
· aJ,τ + bJ,τ · (W · bJ,τ )

−1 · Pt

= aP,τ + bP,τ · Pt

where

aP,τ =
(
I − bJ,τ · (W · bJ,τ )

−1 ·W
)
· aJ,τ (5.16)

bP,τ = bJ,τ · (W · bJ,τ )
−1

(5.17)

Via equations (5.16) and (5.17) JSZ create a link between the dynamics that characterise the time series

dynamics and cross sectional behaviour of yields, as represented by the Jordan form, and the parameters

that govern the yield curve, when using principal components as underlying factors.

As mentioned earlier, JSZ make their MATLAB code available on the net, and this suit of functions

works extremely well and converges exceptionally fast. My implementation below is much less general than

the JSZ code, and it does not converge as fast as their code does. However, the educational benefits of

making our own implementation hopefully outweighs the programming deficiencies. To estimate a version

of the Joslin, Singleton, and Zhu (2011) model the following steps are followed:

1. ρ0 and ρ1 are determined by the normalisation constraints, so no short rate regression is needed

2. use principal component analysis to identify the factors P and the weights W
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3. find kP, ΦP, and ΣP
P using linear regression, or maximum likelihood (if constraints are imposed on the

parameters), from the time series evolution of Pt
4. make a first guess on the eigenvalues contained in γQ, and for kQ∞

5. calculate aJ,τ and bJ,τ using the recursive equations in (5.9) and (5.10)

6. use (5.16) and (5.17) to find aP,τ and bP,τ

7. then find γQ, and for kQ∞ as the solution to the minimisation problem below:

{
γ̂Q, k̂Q∞

}
= argmin

γQ,kQ∞

∑
t

∑
τ

(y − (aP + bP · P))
2

(5.18)

where y is the whole panel of yield curve observations spanning all dates and maturities.

After having obtained the parameter estimates of the Jordan form of the model, the remaining

parameters of the PCA founded model can be determined. This is done here, starting with the short

rate equation:

rt = ρJ,0 + ρJ,1 ·Xt

= rhoJ,0 + ρJ,1 · (W · bJ,τ )
−1

(Pt −W · aJ,τ )

= ρJ,0 − ρJ,1 · (W · bJ,τ )
−1 ·W · aJ,τ + ρJ,1 · (W · bJ,τ )

−1 · Pt

= ρP,0 + ρP,1 · Pt

where

ρP,0 = ρJ,0 − ρJ,1 · (W · bJ,τ )
−1 ·W · aJ,τ (5.19)

ρP,1 = ρJ,1 · (W · bJ,τ )
−1
. (5.20)

And, then for the Q-dynamics of the factors:

Xt = mJ + ΦJ ·
(
Xt−1 −mJ

)
(W · bJ,τ )

−1 · (Pt −W · aJ,τ ) = mJ + ΦJ · (W · bJ,τ )
−1 · (Pt−1 −W · aJ,τ )− ΦJ ·mJ

(W · bJ,τ )
−1 · Pt = (W · bJ,τ )

−1 ·W · aJ,τ +mJ

+ ΦJ · (W · bJ,τ )
−1 · (Pt−1 −W · aJ,τ )− ΦJ ·mJ

(W · bJ,τ )
−1 · Pt = ΦJ · (W · bJ,τ )

−1 Pt−1 +
(
I − φJ

)
·
(
mJ + (W · bJ,τ )

−1 ·W · aJ,τ
)

Pt = (W · bJ,τ ) · ΦJ · (W · bJ,τ )
−1 Pt−1

+ (W · bJ,τ )
(
I − ΦJ

)
·
(
mJ + (W · bJ,τ )

−1 ·W · aJ,τ
)

(5.21)
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This means that the parameters of the dynamic evolution of the principal components can be found in the

following way:2.

ΦQ
P = (W · bJ,τ ) · ΦJ · (W · bJ,τ )

−1
. (5.22)

mQ
P =

(
I − (W · bJ,τ ) · ΦJ · (W · bJ,τ )

−1
)−1

(W · bJ,τ ) ·
(
I − ΦJ

)
·
(
mQ
J + (W · bJ,τ )

−1 ·W · aJ,τ
)
. (5.23)

The notation may have gotten a bit out of hand in the above. I hope it is still roughly clear, what we

have achieved (or rather what Joslin, Singleton, and Zhu (2011) have achieved), i.e. by specifying the term

structure model in its most fundamental form, via the Jordan basis, helped clarify which of the variables

that are central for its empirical implementation and, by afterwards rotating the model to one that relies

on principal components as underlying factors, a link was established to data, and we are therefore able to

estimate the model. In addition, it was shown in equation (5.6), that the P and Q-measures can be separated

- this is of course important from a model forecasting perspective: basically, this separation principle tell us

that superior forecasting performance of a model is unrelated to whether or not it belongs to the family of

arbitrage free models. And, it directs our attention to what may facilitate superior forecasting performance,

namely the careful selection of exogenous variables to include, and to the number of factors that the model

specification relies on. As far as notation goes, the intention was that whenever a J appears, as a super-

or subscript, it means that the parameter belongs to the Jordan form of the model, and whenever a P

appears, it indicates that the parameter belongs to the model based on principal components. Hopefully,

this is not too confusing after all.

5.3 Implementing the arbitrage-free SRB model

Similar to the above section, a very short implementation guideline is provided here for the arbitrage-free

SRB model. This model is also integrated into the TSM class (for completeness). Two, three, four, factors

models are supported.

A step-wise estimation algorithm is used (following Nyholm (2018)), which can be seen as a special case

of Andreasen and Christensen (2015) and Rios (2015):

1. conditional on γQ, the arbitrage-free yield loading, bτ , is known in closed-form from (4.43)

2. using the yield equation, as in (5.7), the yield factors can be found as: X = b−1
τ · y′, where b−1

τ is

the pseudo-inverse of bτ . This is similar to JSZ’s approach in equation (5.13), where PCA weights are

used to construct the underlying yield curve factors, although here we use b−1
tau as the weighting matrix

(because we want to impose a certain economic interpretation onto the extracted factors)

2 Note that (5.21) is written in the constant form, and not in mean-adjusted form. Consequently, the mean is
found via the generic expression: m = (I − Φ)−1 · c
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3. the optimal value for γ is found via grid-search, as the γ that minimises
∑
t

∑
τ (y − bτ (γ) ·X)2

4. using the extracted factors and (5.8), the parameters governing the P-measure dynamics can be found

5. recalling that ΦQ is a function of γQ, the last remaining parameter, mQ, is found as the solution to

argmin
mQ

∑
t

∑
τ (y − (aτ + bτ ·X))

2

5.4 Constructing a model with the short rate and the 10-year term premium

as underlying factors

A specific factor structure can help communicating the results of the model easier to third parties (including

decision makers), by better supporting a given narrative and communication style. For example, as we

have seen, the underlying economic building blocks of the yield curve are the rate expectation and the

term premium components. Often in economic analysis, yield curve levels and changes around important

events, such as, among other things, Governing council meetings, major economic news release dates, and

when some unexpected news hits the market, are typically broken down into these components to give a

reading of how the financial market participants interpret the event. It is naturally important to know the

degree to which market participants see an event as affecting the future economic environment (the rate

expectations) and how it affects their perception of current and future risks (the term premium component).

Such decompositions are typically done on the basis of term structure models that use principal components

as underlying factors, and where the factors therefore have interpretations as the level, the slope and the

curvature; and, most often such models that fall in the camp that excludes arbitrage by construction.

So, the aim of the current section is to build an empirical model that includes the short rate, the term

premium and curvature factors, as underlying yield curve factors. This is, perhaps surprisingly, not done

very often and the literature on models having this kind of factor structure is very scarce. Actually, to the

best of my knowledge a notable exception from this generalisation is the seminal paper by Creal and Wu

(2017).

As always, our approach is modest and it cuts a fair amount of corners. The first corner we cut is the

one where the arbitrage-free models rest. By relying on a purely empirical model we are able to finalise

its implementation quickly - and we can then look at how to build an arbitrage-free model, with the same

factor structure, at a later stage (i.e. not in the current version of these lecture notes). The following steps

are applied:

1. Extraction of observable factors: We rely on the SRB3 model to generate the two factors that are directly

attainable, i.e. the short rate, the 10-year term premium. Any reasonable term-structure model could

in principle to used to this end. So, now we have the two first elements of X, denoted by X(1:2).

2. Finding the loading structure bτ,(1:2): The yield loadings bτ,(1:2) that match X(1:2) are obtained by

inversion (or linear regression) y = X(1:2) · b′tau,(1:2) ⇔ b′tau,(1:2) = X−1
(1:2) · y, where the pseudo-inverse

is used to obtain X−1
(1:2).
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3. Obtaining the remaining factors: The third and forth factors are obtained via PCA performed on the

residuals from the model using the two factors obtained in step 1, and the loading structure found in

step 2. The residuals are found as: e = y − X(1:2) · b′tau,(1:2), and the first two factors (i.e. the ones

having the largest eigenvalues) are sampled as X(3:4). That is, the PCA is performed on the covariance

matrix, Ωy = 1/T · e′e.

4. Finding the loading structure bτ,(1:4): Similar to step 2, bτ is found as: b′tau = X−1 · y, where X hold

the time series of all four factors.

Steps 1-4 completes the yield equation of the model, and since the factors contained in X are observable,

the parameters that govern their dynamic evolution can be obtained by VAR analysis, as it is done in all

the models that we have looked at so far. For convenience, we include this empirical model in our TSM

class, that accompany these lecture notes.
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Scenario generation with yield curve models

6.1 Introduction

In this chapter we bring together the elements from the other chapters, and show concrete examples of

how yield curve models can be used in a risk management context. What we will look at is unconditional

and conditional forecasting as well as scenario generation. To this end, three case studies will be solved:

(1) A horse-race between the models we have looked at so far. Starting in Januar 1994 the models are

evaluated against each other in terms of how well they predict future yield developments.

(2) Macroeconomic variables are included, and a sub-set of the models are used to generate conditional

forecasts.

(3) Scenarios are constructed where the future path of the yield curve is forced to pass through a set of

exogenously determined future fixed points.

We are naturally using the same US yield curve data in this chapter that we have been using throughout

the lecture notes.

6.1.1 The horse-race

Eighteen different model specifications are tested. Their differences fall along three dimensions (i) whether

they impose arbitrage constraints, or not; (ii) whether bias correction is performed on the VAR dynamics,

or not; and (iii) and whether they rely on 2, 3, or 4 factors.

The pseudo out-of-sample forecasting experiment is carried out in the following way:

1. sample data from June 1961 till January 1994

2. estimate the model under consideration

3. perform model forecasts for the horizon of 1-month to 12-months ahead, for each of the maturity points

covered by the data sample i.e. for the {0.25, 1, 2, . . . , 10} year segments of the yield curve

4. calculate and store the differences between observed and forecasted yields

5. add one month to the sample, and repeat the above steps
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6. repeat the process for the 282 data points covered by the evaluation sample, i.e. from February 1994

to June 2017 (we loose 1-year of data due to the 12-months forecasting horizon)

7. repeat the above for each of the eighteen models to be evaluated

Tables 6.1.1, 6.1.1, and 6.1.1, show the resulting forecast RMSE for each model at forecast horizons

of 1, 2, 3, 6, and 12 ahead. Only a representative set of yield curve segments (maturities) are shown, and

these are the 3-month, 5, and 10-year segments. For example, the first data row of Table 6.1.1 shows the

ability of the dynamic Nelson-Siegel (DNS) model to forecast the 3-month maturity-segment of the yield

curve: 1-month ahead the DNS model misses observed yields with an RMSE of 18 basis points, 2-months

ahead the model misses with an RMSE of 27, and so on for the 3, 6 and 12-months projection horizons,

with RMSEs of, 38, 67, and 122 basis points, respectively. For a model-free comparison, the last data line

in each of the tables shows the RMSE of the Random walk model.

It is interesting to see that the forecasting performance reported here is very similar to the results

of Diebold and Li (2006): both in terms of size and pattern across maturity segments and forecasting

horizons - with one significant difference, which is addressed below. It is recalled that Diebold and Li

(2006) conducted their analysis on US data covering the period from 1985 to 2000, and that the forecasting

experiment they conducted was based on pseudo our-of-sample forecasts beginning in 1994. Our analysis

extends the data sample to cover historical data going back to 1961 and our forecast also start in 1994, but

extend to 2018. Still, results are quite well aligned. To illustrate the similarity of the produced forecasting

performance, some representative figures are reported here. Table 5 in Diebold and Li (2006) show that

the RMSE of the 3-months, 5-year and 10-year maturity points, forecasted 6-months ahead are 52, 78, and

72, respectively. In comparison, our study gives the following RMSEs 67, 74, 61. Differences of similar sizes

are seen for the tested maturities and forecasting horizons. So, there is a much smaller difference between

the numbers produced by Diebold and Li (2006) and our results, despite of the differences in the historical

and forecast-evaluation periods.

There might be some who are of the opinion that the documented differences are large - roughly 10

basis points difference in term of standard deviation is not small, they may say. To assess whether the

size of the difference is large or not, it may be illustrative to consider the standard error on the forecasts

themselves. Inspecting the estimated models suggest that a comparable (i.e for the same maturity point

and forecast horizon) forecast error is in the range of 20-30 basis points, so, to my reading the differences

between the Diebold and Li (2006) results and our results are immaterial.

Now, as mentioned above, there is one important difference between our results and those of Diebold

and Li (2006). And, this relates to the behaviour of the short end of the curve. Starting with the Fed’s

response to the 2007/2008 financial crises by lowering the policy rate, see the top panel of Figure 1.2, the

dynamics of the short end has been under the control of the monetary authority and has remained at very

low levels until around year 2017. In addition, the Fed’s asset purchase programmes, implemented during

this period, have impacted the term structure of term premia. However, our forecasting results imply that
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the dynamics of longer maturities of the curve can be well approximated by the same DGP as before 2007

- only the short end is materially impacted - as is clear from the performance of the 3-months segment of

the curve shown in Table 6.1.1.

Forecast horizon

1-month 2-months 3-months 6-months 12-months

DNS 18 27 38 67 122

DNS (bc) 17 27 38 66 111

DSS 18 28 39 68 122

DSS (bc) 18 28 39 66 122

SRB-3 18 27 38 67 122

SRB-3 (bc) 17 27 38 66 111

SRB-4 18 28 39 68 122

SRB-4 (bc) 18 28 39 67 122

JSZ 29 51 70 111 166

JSZ (bc) 26 44 60 91 133

AFSRB-2 30 31 39 67 122

AFSRB-2 (bc) 32 35 43 68 122

AFSRB-3 18 27 38 67 122

AFSRB-3 (bc) 17 28 39 67 122

AFSRB-4 30 45 63 122 200

AFSRB-4 (bc) 18 28 39 68 122

SRTPC1C2 44 47 53 74 122

SRTPC1C2 (bc) 38 42 50 74 122

Random walk 38 42 50 74 122

The RMSE of model forecasts calculated for the period covering January 1994 to July 2018 are

shown. Each model is re-estimated each at each monthly observation point that is included in

the evaluation period (using an expanding data sample), i.e. for each of the 282 months that falls

in the period between January 1994 and July 2017. 12 months ahead forecasts are generated at

each of the 282 observation points covered by the evaluation sample (this is why the last month

estimations are performed is July 2017). The table shows the RMSE of the forecasts for 1,2,3,6, and,

12-months ahead, for the 3-month yield curve segment. Model names featuring a “(bc)” have been

bias corrected using Pope (1990). The actual models that hides behind the shown abbreviations

can be found in the MATLAB TSM class that accompany these lecture notes and in section ZZZ.

Table 6.1. Forecast RMSEs for the 3-month yield curve segment (basis points)
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Forecast horizon

1-month 2-months 3-months 6-months 12-months

DNS 30 44 53 74 100

DNS (bc) 29 42 51 70 92

DSS 27 41 50 71 97

DSS (bc) 27 41 49 69 91

SRB-3 30 44 53 74 100

SRB-3 (bc) 29 42 51 70 92

SRB-4 28 42 51 72 98

SRB-4 (bc) 27 41 50 69 91

JSZ 29 41 49 69 93

JSZ (bc) 29 42 50 67 85

AFSRB-2 34 47 55 77 100

AFSRB-2 (bc) 33 45 53 72 95

AFSRB-3 30 44 53 75 100

AFSRB-3 (bc) 30 43 51 71 93

AFSRB-4 67 77 84 100 133

AFSRB-4 (bc) 29 41 50 70 92

SRTPC1C2 44 53 60 78 100

SRTPC1C2 (bc) 44 53 61 79 100

Random walk 44 53 61 79 100

The RMSE of model forecasts calculated for the period covering January 1994 to July 2018 are

shown. Each model is re-estimated each at each monthly observation point that is included in

the evaluation period (using an expanding data sample), i.e. for each of the 282 months that falls

in the period between January 1994 and July 2017. 12 months ahead forecasts are generated at

each of the 282 observation points covered by the evaluation sample (this is why the last month

estimations are performed is July 2017). The table shows the RMSE of the forecasts for 1,2,3,6, and,

12-months ahead, for the 5-year yield curve segment. Model names featuring a “(bc)” have been

bias corrected using Pope (1990). The actual models that hides behind the shown abbreviations

can be found in the MATLAB TSM class that accompany these lecture notes and in section ZZZ.

Table 6.2. Forecast RMSEs for the 5-year yield curve segment (basis points)
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Forecast horizon

1-month 2-months 3-months 6-months 12-months

DNS 28 40 45 61 75

DNS (bc) 29 40 46 61 73

DSS 27 39 45 61 76

DSS (bc) 28 40 46 62 74

SRB-3 28 40 45 61 75

SRB-3 (bc) 29 40 46 61 73

SRB-4 27 39 45 61 76

SRB-4 (bc) 27 40 45 62 74

JSZ 31 44 52 75 111

JSZ (bc) 30 42 48 67 86

AFSRB-2 38 47 52 65 74

AFSRB-2 (bc) 39 49 54 67 77

AFSRB-3 29 40 45 60 74

AFSRB-3 (bc) 29 41 46 61 73

AFSRB-4 49 49 51 61 79

AFSRB-4 (bc) 28 40 46 62 73

SRTPC1C2 45 52 57 70 86

SRTPC1C2 (bc) 46 53 59 74 87

Random walk 46 53 59 74 87

The RMSE of model forecasts calculated for the period covering January 1994 to July 2018 are

shown. Each model is re-estimated each at each monthly observation point that is included in

the evaluation period (using an expanding data sample), i.e. for each of the 282 months that falls

in the period between January 1994 and July 2017. 12 months ahead forecasts are generated at

each of the 282 observation points covered by the evaluation sample (this is why the last month

estimations are performed is July 2017). The table shows the RMSE of the forecasts for 1,2,3,6, and,

12-months ahead, for the 10-year yield curve segment. Model names featuring a “(bc)” have been

bias corrected using Pope (1990). The actual models that hides behind the shown abbreviations

can be found in the MATLAB TSM class that accompany these lecture notes and in section ZZZ.

Table 6.3. Forecast RMSEs for the 10-year yield curve segment (basis points)

If we had been asked to make an unconditional guess, we would probably have said that the precision of

the model forecasts would deteriorate as the forecast-horizon is increased. And, this is also what Tables 6.1.1,

6.1.1, and 6.1.1 confirm. Furthermore, being aware of the implemented policy measures since 2007/2008,

we would also have said that the dynamics of the short end would be forecasted poorly, and that a shadow-

short rate model may alleviate this problem (the reason why the SSR model is not included in the horse race

is because it is very time-consuming to re-estimate this model 282 times). Finally, based on the separation

of the likelihood function as derived by Joslin, Singleton, and Zhu (2011), see equation (5.6), we may also

have reached the conclusion - since all tested models are based on a VAR(p) model for the factor dynamics,
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that their forecasting performance must be reasonably close; although differences may materialise due to

a marginal better performance of e.g. a VAR(3) model, compared to VAR(2) and VAR(4) alternatives.

One of the practical conclusions that can be drawn from this horse race is that the choice of yield

curve model has little impact on the precision of the unconditional forecasting performance. It does not

seem feasible to choose the “best” model on the basis of its forecasting skills, when forecasts are made

unconditionally. We have confirmed this empirically via the results of the performed horse race, as shown

in Tables 6.1.1, 6.1.1, and 6.1.1. And, theoretical considerations also support this conclusion, as argued

above.

What should then guide our choice of model set-up? One element could be models’ conditional

forecasting performance; but we are not now going to conduct another horse race to explore different

conditioning datasets - this would take too much time, as there are so many different constellations of

macroeconomic variables that may be relevant. Another element is more subjective, yet important, and it

relates to the factor structure that better fit the narratives we aim to support with our model. And, this

of course depends on the business context in which the model is used. So, unfortunately, all the hard work

that went in to producing the results shown in Tables 6.1.1, 6.1.1, and 6.1.1, while perhaps helpful from a

general perspective, will not solve the model-selection problem for us.

6.1.2 Conditional projections

In many practical application we are interested in generating conditional yield curve scenarios. For

example, in the context of strategic fixed income asset allocation, our objective is to assess risk and return

characteristics of bond indices and portfolios in a setting where the investment horizon is long. For this

purpose, unconditional forecasts are not overly useful, because the underlying VAR model that governs the

dynamic evolution of the yield curve factors (and therefore also the yields) will typically converge to its

sample mean before the end of the investment horizon. It is therefore limited what kind of relevant questions

such model projections can answer. In stead, when deciding on long-term asset allocations, it is relevant

to know what the yield curve will look like, if one or the other macroeconomic environment materialises,

and how the yield curve converges to such scenario-based economic outcomes. In effect, the yield curve

model becomes a tool that can help illustrate the consequence of various, more or less realistic, economic

scenario-developments on expected returns and risks along the maturity dimension of the investable asset

universe. So, rather then hoping for a yield curve model that will generate accurate point forecasts, we seek

a model that links macroeconomic variables to yield curve developments, such that accurate conditional

yield distributions can be generated (as opposed to accurate point estimates).

The reason why macroeconomic variables are pulled to the forefront here is that we may have a better

grasp at what value such variables would take in different possible future scenarios, and it would be

comparable harder for us to directly predict how the yield curve would evolve. This is why we build a

bridge between the dynamic evolution of yield curves and macroeconomic (or other) variables, such that
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we can generate scenarios for these bridge-variables and subsequent extract the yield curve evolution,

because this is what we are genuinely interested in.

As mentioned in the previous section, there are many macro variables to choose from. Out of

convenience, we choose to use the same type of macroeconomic variables as used in Diebold, Rudebusch,

and Aruoba (2006), namely manufacturing capacity utilisation (CU) and annual price inflation (INFL)1.

These data are obtained from the FRED database, and are shown in Figure 6.1. These three variables gauge

the level of real economic activity relative to potential, and the inflation rate. The macroeconomic variables

are observable at a monthly frequency since January 1972, and our conditional forecasting experiment is

therefore limited to using data from this date onwards.
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Capacity Utilisation
Inflation rate

US macroeconomic variables observed monthly since 1972. Manufacturing capacity utilisation

(CU) and annual price inflation (INFL) are shown. Capacity utilisation (FRED code MCUMFN)

is divided by 10. The inflation rate is calculated as the 12-month percent change in the Personal

Consumption Expenditures Excluding Food and Energy (Chain-Type Price Index), (FRED code

PCEPILFE).

Fig. 6.1. Capacity utilisation and inflation

We then form a set of possible macroeconomic scenarios. Although the conditional yield distributions

were mentioned above as a main reason for this exercise, to keep things manageable in terms of visual

1 The variable INFL is the 12-month percent change in the Personal Consumption Expenditures Excluding Food
and Energy (Chain-Type Price Index), (FRED code PCEPILFE). The used CU variable has FRED code
MCUMFN. Diebold, Rudebusch, and Aruoba (2006) also include the federal funds rate in their study, but
since we will rely on a multi-factor short-rate based model (SRB3), we already have the short rate included
among the yield curve factors that we model.
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representations, we show only the mean paths of the yield curve. The presented framework can easily be

used to also generate distributions.

Since the objective is to extract the model implied trajectories for the yield curve factors βy conditional

on the macroeconomic variables βmacro, we first need to estimate the parameters that govern the joint

evolution of β = [βy, βmacro]. For demonstration purposes alone we do this in the context of the SRB3

model (any of the term structure models included in these lecture note can naturally be used). After

the model parameters have been identified, we then use the Kalman filter to extract the model implied

conditional projections of interest. The game-plan is the following:

1. Estimate the SRB3 model by including the two macro variables as exogenous variables (using the TSM

class).

2. Set-up the VAR(1)-part of the model (i.e. the part involving the dynamic evolution of the yield curve

factors) in a MATLAB SSM model. This allows us to easily calculate the conditional projections for

the yield curve factors using MATLAB’s pre-programmed Kalman filter.

3. Make scenario-projections for the macroeconomic variables over a 5-year period. To exemplify, four

scenario developments are examined: (1) Random walk (INLF and CU stays constant at their levels

as observed at the end of the sample period); (2) exponential growth in inflation until a level of 4% is

reached, after which the inflation rate normalises over a period of 12 months, and it then stays constant

at 2.5% until the end of the projection horizon; (3) a linear drop in inflation to a level of 1.75% followed

by a linear recovery; (4) a steady increase in economic growth over a period of four years, while the

inflation rate is under control.

4. The conditional-scenario projections for the yield curve factors are converted into yields using the

estimated SRB3-model’s loading structure.

It is important to emphasise that the parametrisation of the model that is used here, has not been validated,

nor has it undergone any testing/calibration to ensure that its economic narrative is sound: in other words,

the model is used exactly as it comes, directly from the machine-room. The purpose here is, of course,

not to construct a model that can enter directly into the SSA/policy process. The objective is simply to

illustrate how the provided tool box can be used to make conditional yield curve projections.

It is left to the reader to investigate and inspect the outcome of each of the sketched scenarios using

Figures 6.2, 6.3, 6.4, and 6.5.
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The LHS panel shows the macroeconomic scenario as illustrated by the assumed evolution of the

macroeconomic variables. The macroeconomic developments are only dictated for the period of

time that defines the scenario. After this period, the Kalman filter is used to find the relevant

projections. The yield curve factors of the model are also obtained via the Kalman filter as

projections that are calculated conditional on the macroeconomic developments. The RHS panel

shows the corresponding development in the yield curve. The scenario spans a horizon of 5-years.

Fig. 6.2. Scenario 1: Random walk for inflation and economic growth
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The LHS panel shows the macroeconomic scenario as illustrated by the assumed evolution of the

macroeconomic variables. The macroeconomic developments are only dictated for the period of

time that defines the scenario. After this period, the Kalman filter is used to find the relevant

projections. The yield curve factors of the model are also obtained via the Kalman filter as

projections that are calculated conditional on the macroeconomic developments. The RHS panel

shows the corresponding development in the yield curve. The scenario spans a horizon of 5-years.

Fig. 6.3. Scenario 2: exponential growth in inflation
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The LHS panel shows the macroeconomic scenario as illustrated by the assumed evolution of the

macroeconomic variables. The macroeconomic developments are only dictated for the period of

time that defines the scenario. After this period, the Kalman filter is used to find the relevant

projections. The yield curve factors of the model are also obtained via the Kalman filter as

projections that are calculated conditional on the macroeconomic developments. The RHS panel

shows the corresponding development in the yield curve. The scenario spans a horizon of 5-years.

Fig. 6.4. scenario 3: a sudden drop in inflation
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The LHS panel shows the macroeconomic scenario as illustrated by the assumed evolution of the

macroeconomic variables. The macroeconomic developments are only dictated for the period of

time that defines the scenario. After this period, the Kalman filter is used to find the relevant

projections. The yield curve factors of the model are also obtained via the Kalman filter as

projections that are calculated conditional on the macroeconomic developments. The RHS panel

shows the corresponding development in the yield curve. The scenario spans a horizon of 5-years.

Fig. 6.5. scenario 4: steady economic growth

It is recalled that the mapping between the projected yield curve factors and the scenario yields is given

by the observation equation of our well-know yield curve state-space model:

Y = a+ b ·Xt +ΣY · ut (6.1)
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Above we have plotted only the mean scenarios, i.e. E[Y ]. But, it is of course possible to use this frame

work to generate distributions around the shown mean paths. This can be done by drawing innovations for

the state and observation equations and by feeding these though ΣX and ΣY , respectively. Another often

used method is to block-bootstrap the historical residuals, possibly only sampled from historical periods

that are judged to be similar to the one characterising the projection horizon.

6.1.3 Fix-point scenarios

Sometimes we may be able to construct scenarios directly using the yield curve factors; this is particularly

the case when our chosen model is built on yield curve factors that have interpretations that we can relate

to and that have straight-forward economic interpretations. For example, we may be interested in a scenario

where the curve steepens by x% or to a certain level, or perhaps a scenario where the yield curve steepens

to some pre-defined level. Such scenarios can be used e.g. to analyse the size of portfolio losses and gains

given the materialisation of some future shape and location of the yield curve. The point is, contrary to

the previous section where the yield curve and its dynamic evolution was tied to macroeconomic variables,

that sometimes we are able to directly specify scenarios exclusively in terms of the future values that the

yield curve factors are assumed to take on.

To cater for the generation of such scenarios, a neat little re-formulation of the VAR model is helpful. Let

Xtarget
t+h be the sequence of future fixed points that the factors are assumed to take on. h = {h1, h2, . . . , hn}

is a vector of future horizons, that define the scenario factor values (and thus naturally the scenario yield

curves). In order to illustrate this process, we will focus on a single future horizon, but the process naturally

genralises to multiple horizons, as we shall see in the empirical illustration below.

Starting with the VAR(1) model that govern the dynamic evolution of the yield curve factors (and

suppressing the expectations operator for ease of notation), and making a projection for the horizon h1

gives the following:

Xt+h1
= µ+ Φh1 (Xt − µ) . (6.2)

We now want to ensure that this projection exactly meets a given future set of yield curve factor values,

such that Xt+h1
= Xtarget

t+h1
. We also want to retain the factor interpretation that is embedded in our

chosen term structure model. In other words, we need to leave the eigenvectors of Φ unchanged during

this exercise, because it is the eigenvectors that define the direction of the factor and thus their economic

interpretation. This leaves us with the persistency parameters (the eigenvalues of Phi), and the mean m

to be eligible for changing. Lets implement the changes via the presistency parameters, and write Φ using

the eigenvalue decomposition:

Xt = µ+ V ·D · V −1 · (Xt − µ) , (6.3)
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where V contains the eigenvectors, and D holds eigenvalues on the diagonal. We can then write:

Xtarget
t+h1

− µ = V ·Dh1 · V −1 · (Xt − µ)

m

Dh1 · V −1 · (Xt − µ) = V −1 ·
(
X

Target
t+h1

− µ
)

m

Dh1 = V −1 ·
(
X

Target
t+h1

− µ
)
�
(
V −1 · (Xt − µ)

)−1
, (6.4)

where � represents the element-by-element multiplication. The last line works because D is diagonal.

Intuitively, it makes sense to change the persistency part of the system to force the yield curve factors

to pass through a certain future fix point. The persistency of the model (the eigenvalues) is what makes

the model converge to its sample mean: the higher the persistency (the higher the eigenvalues) the slower

the convergence to historical means. So, by keeping the eigenvectors fixed, the economic interpretation of

the factors remains unchanged, while the persistency is changed such that the desired fix-point values can

be met at the desired projection horizon.

To illustrate this process we again generate a scenario over the coming five year, now using the

SRTPC1C2-model, i.e. the one where we have included the short rate and the 10-year term premium

as yield curve factors (together with two curvature factors). Having the short rate and the term term

premium as underlying factors allows to us make scenarios where future fixed-point values are specified

exogenously for the value that these factors may take on at future dates covered by the projection horizon.

Following a period of central bank intervention in the fixed income markets via bond purchases, as seen

in the US from 2008 to 2018, where the purpose of such interventions is to compress the term premium -

and thereby the yield curve - it is likely that we have in mind particular future trajectories for the term

premium and the short end of the yield curve, and it is therefore handy to be able to model these factors

explicitly in the context of a formal modelling-and-projection framework. But, the relevance of having a

direct handle on these factors naturally extends beyond the quantitative easing example provided here,

and is of a general interest in monetary policy modelling as well as strategic investment analysis.

In the current example, it is assumed that we have three fix-points: (1) after 6-months where the 10-

year term premium equals 0.00% (at the start of the projection-horizon sample (July 2018) the 10-year

term premium is estimated to be around −0.70%); (2) after an additional 18-months, the 10-year term

premium equals 4.00%; and (3) at the end of the 60-months projection horizon the 10-year term premium

equals 1.5% and the short rate equals 4.00%. The resulting factor trajectories and yield curve evolutions

are displayed in Figure 6.6.
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The LHS panel shows the development of the yield curve factors of the SRTPC1C2-model, i.e.

the short rate, the 10-year term premium, and the two curvature factors. The projected scenario

is defined by three fixed-point vectors that the factors are required to pass through, (1) after

6-months where the 10-year term premium equals 0.00% (at the start of the projection-horizon

sample (July 2018) the 10-year term premium is estimated to be around −0.70%); (2) after an

additional 18-months, the 10-year term premium equals 4.00%; and (3) at the end of the 60-months

projection horizon the 10-year term premium equals 1.5% and the short rate equals 4.00%. The

resulting factor trajectories and yield curve evolutions are displayed in. The RHS panel shown the

corresponding yield curve projection.

Fig. 6.6. A yield curve scenario using fixed-point projections

The familiar relationship between factors and yields recalled in equation (??) is also used here to

translate projected yield curve factors into yield evolutions.

In the LHS panel of Figure 6.6 it is observed that the projections for the short rate and the 10-year

term premium pass through the scenario fixed-points at the pre-specified future dates, and that the RHS

panel of Figure 6.6, traces out the scenario yields that follow as a logical consequence of the yield curve

factor trajectories.
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6.2 MATLAB code

filename: Scenario and forecasting.m

1 %% Scenario generation and forecasting

2 %

3 % preparing the data

4 %

5 warning(’off’,’all’)

6 load(’Data_GSW_factors_Course_2018.mat’);

7 GSW_ = GSW; % creates an instance of the GSW class

8 GSW_.tau = [3 12:12:120] ’; % vector of maturities

9 GSW_.beta = GSW_factors (: ,2:5); % yield curve factors

10 GSW_.lambda = GSW_factors (: ,6:7); % lambdas

11 GSW_ = GSW_.getYields; % getting yields

12

13 dates = GSW_factors (:,1);

14 Y = GSW_.yields;

15 tau = GSW_.tau;

16 nTau = size(tau ,1);

17

18 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

19 surf(tau./12,dates ,Y)

20 date_ticks = datenum (1960:4:2020 ,1 ,1);

21 set(gca , ’ytick ’, date_ticks);

22 datetick(’y’,’mmm -yy’,’keepticks ’)

23 xticks (0:1:11) , xticklabels ({tau}),

24 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

25 view ([ -109 38]),

26 ytickangle (-25),

27 set(gca , ’FontSize ’, 18)

28 %print -depsc Y3D

29

30 figure

31 plot(dates ,Y(:,11))

32 date_ticks = datenum (1960:4:2020 ,1 ,1);

33 set(gca , ’xtick ’, date_ticks);

34 datetick(’x’,’mmm -yy’,’keepticks ’)

35

36 %% The horse -race

37 % The following models are included in the horce -race

38 % ---------------------------------------------------

39 % DNS -> Dynamic Nelson -Siegel model

40 % DNS_bc -> Dynamic Nelson -Siegel model , bias corrected

41 % DSS -> Dynamic Svensson -Soderlind model

42 % DSS_bc -> Dynamic Svensson -Soderlind model , bias corrected

43 % SRB3 -> Short -Rate based 3-factor model

44 % SRB3_bc -> Short -Rate based 3-factor model , bias corrected

45 % SRB4 -> Short -Rate based 4-factor model

46 % SRB4_bc -> Short -Rate based 4-factor model , bias corrected

47 % JSZ -> Joslin , Singleton , Zhu (2011)

48 % JSZ_bc -> Joslin , Singleton , Zhu (2011) , bias corrected

49 % AFSRB -> Arbitrage -free SRB model with 2,3, or 4 factors
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50 % AFSRB_bc -> Arbitrage -free SRB model with 2,3, or 4 factors , bias c.

51 % SRTPC1C2 -> Model with Short rate , 10-year term premium ,

52 % and 2 additional empirical factors

53 % SRTPC1C2_bc -> Model with Short rate , 10-year term premium ,

54 % and 2 additional empirical factors , bias corrected

55 %

56 % Note that program execution could possibly be increased by combining

57 % the pseudo out -of -sample forecasts , performed for each model ,

58 % inside one loop. However , with an eye to clarity of the code ,

59 % a slower model -by -model programming set -up is used.

60 %

61 fDate = datenum(’31-Jan -2014’); % start date for the horse -race

62 horizon = 12; % forecast horizon

63 startIndx = find(fDate ==dates ,1,’first’);

64 nIter = GSW_.nObs - startIndx - horizon;

65 fErr = NaN(horizon+1,GSW_.nTau ,nIter);

66

67 %

68 % ... DNS

69 %

70 DNS_fErr = NaN(horizon+1,GSW_.nTau ,nIter);

71 for ( j=1: nIter )

72 estYields = Y(1: startIndx+j,:);

73 oYields = Y(startIndx+j-1: startIndx+j-1+ horizon ,:);

74 A_TSM = [];

75 A_TSM = TSM;

76 A_TSM.yields = estYields;

77 A_TSM.tau = tau;

78 A_TSM.DataFreq = 12;

79 A_TSM.nF = 3;

80 A_TSM.biasCorrect = 0;

81 A_TSM = A_TSM.getDNS;

82 castY = [];

83 A_SSM = TSM2SSM;

84 A_SSM.TSM = A_TSM;

85 A_SSM = A_SSM.getMdl;

86 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl , ...

87 horizon , A_SSM.Data(startIndx+j-1,:) )];

88 DNS_fErr (:,:,j) = oYields -castY (: ,1:11);

89 end

90 DNS_fRMSE = 100.* sqrt(mean(( DNS_fErr .^2) ,3));

91

92 %

93 % ... DNSbc

94 %

95 DNSbc_fErr = NaN(horizon+1,GSW_.nTau ,nIter);

96 for ( j=1: nIter )

97 estYields = Y(1: startIndx+j,:);

98 oYields = Y(startIndx+j-1: startIndx+j-1+ horizon ,:);

99 A_TSM = [];

100 A_TSM = TSM;

101 A_TSM.yields = estYields;

102 A_TSM.tau = tau;

103 A_TSM.DataFreq = 12;
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104 A_TSM.nF = 3;

105 A_TSM.biasCorrect = 1;

106 A_TSM = A_TSM.getDNS;

107 castY = [];

108 A_SSM = TSM2SSM;

109 A_SSM.TSM = A_TSM;

110 A_SSM = A_SSM.getMdl;

111 castY = [ A_SSM.Data(startIndx+j-1,:); forecast(A_SSM.Mdl , ...

112 horizon , A_SSM.Data(startIndx+j-1,:) )];

113 DNSbc_fErr (:,:,j) = oYields -castY (: ,1:11);

114 end

115 DNSbc_fRMSE = 100.* sqrt(mean(( DNSbc_fErr .^2) ,3));

116

117 % ....................... Note ......................................

118 % The remaining model evaluations are included in the available MATLAB

119 % code. Here only a sample is included to save space , and since the

120 % evaluation of the other 16 models follow the exact same format as the

121 % two shown above.

122 %

123

124 %% Conditional forecasting exercise

125 %

126 nCast = 60;

127 indxStart = find(dates == US_MacroVariables (1,1) ,1,’first’);

128 % index to match yield and macro data

129 datesX = dates(indxStart:end ,1);

130 datesCast = (dates(end ,1) :31: dates(end ,1)+(nCast)*31) ’;

131 SRB3 = TSM;

132 SRB3.yields = Y(indxStart:end ,:);

133 SRB3.tau = tau;

134 SRB3.DataFreq = 12;

135 SRB3.nF = 3;

136 SRB3.eXo = [US_MacroVariables (:,2) ./25 US_MacroVariables (:,3)];

137 SRB3 = SRB3.getSRB3;

138 %

139 % ... convert the VAR part of the model into SSM format

140 %

141 SRB3_SSM = TSM2SSM;

142 SRB3_SSM.TSM = SRB3;

143 SRB3_SSM = SRB3_SSM.getMdl;

144 nX = SRB3_SSM.TSM.nF+SRB3_SSM.TSM.nVarExo; % number of factors and exogenous variables

145 AA = [ SRB3_SSM.Mdl.A(1:nX ,1:nX*2);

146 zeros(nX,nX) eye(nX) ];

147 BB = [ SRB3_SSM.Mdl.B(1:nX ,1:nX); zeros(nX,nX)];

148 CC = eye(nX*2);

149 stateType = [ zeros(1,nX), ones(1,nX) ];

150 castMdl = ssm(AA,BB ,CC,’statetype ’,stateType); % VAR model as SSM model

151

152 beta_Cast = [ NaN( size(SRB3_SSM.Mdl.B,2), nCast); ones(nX ,nCast)];

153 beta_Cast (1:nX ,1) = SRB3_SSM.TSM.beta(:,end);

154 % start projections at last obs of factors

155

156 % .......................................

157 % ... Conditional forecasting examples
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158 % .......................................

159

160 %

161 % 0: unconditional forecast

162 %

163 beta_0 = beta_Cast;

164

165 filter_0 = [ [SRB3_SSM.TSM.beta(:,end)’ ones(1,size(BB ,2))] ; filter(castMdl ,beta_0 ’) ];

166 Y_0 = [SRB3_SSM.Mdl.C(1:nTau ,1:nX*2)*filter_0 ’]’;

167

168 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

169 surf(tau./12, datesCast ,Y_0)

170 date_ticks = datenum (2018:1:2024 ,1 ,1);

171 set(gca , ’ytick ’, date_ticks);

172 datetick(’y’,’mmm -yy’,’keepticks ’)

173 xticks (0:1:11) , xticklabels ({tau}),

174 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

175 zlim ([0 5])

176 view ([-53 16]),

177 ytickangle (25),

178 set(gca , ’FontSize ’, 18)

179 %print -depsc Forecast_Y0

180

181 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

182 plot(datesCast ,filter_0 (: ,4:5),’LineWidth ’ ,2)

183 date_ticks = datenum (2018:1:2024 ,1 ,1);

184 set(gca , ’xtick ’, date_ticks);

185 datetick(’x’,’mmm -yy’,’keepticks ’)

186 ylabel(’ (pct)’), legend(’CU (scaled)’, ’INFL’)

187 ylim ([0 4])

188 set(gca , ’FontSize ’, 18)

189 %print -depsc Forecast_X0

190

191 % ....................... Note ......................................

192 % The remaining model evaluations are included in the available MATLAB

193 % code. Here only a sample is included to save space.

194 %

195

196 %% Fix -point projections

197 %

198 % h_target: is the number of periods ahead at which the target is met

199 % X_target: is the fix -point forecast for the yield curve factor

200 % V : id the eigenvector of Phi

201

202 % % Function that calculate the adjusted mean

203 % m_target = @(X_t , Phi , X_target ,h_target) ...

204 % 1/ h_target *((eye(length(X_t))-Phi)^(-1)*(X_target -Phi*X_t));

205

206 % Function that calculates

207 D_target = @(X_t , V, m, X_target , h_target) ...

208 diag (((V^(-1)*(X_target -m))./(V\(X_t -m))).^(1/ h_target));

209

210 % ... Using the model with factors equal to the: short rate , term premium ,

211 % and C1 and C2
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212 %

213 nCast = 60;

214 datesCast = (dates(end ,1) :31: dates(end ,1)+(nCast -1) *31) ’;

215

216 SR_TP = TSM;

217 SR_TP.yields = GSW_.yields;

218 SR_TP.tau = GSW_.tau;

219 SR_TP.nF = 3;

220 SR_TP.DataFreq = 12;

221 SR_TP = SR_TP.getSRTPC1C2; % est model with SR,TP ,C1,C2

222

223 % ... Generating scenarios

224 %

225 % ... Scenario 1: (a) TP goes to 0% in 6 months ,

226 % (b) Thereafter TP goes to 2% after additional 12 months

227 % while short rate stays low

228 % (c) At the end of the 60 months projection horizon ,

229 % the short rate converges to 4% and the TP to 3%

230 X_t1 = SR_TP.beta(:,end);

231 X_t1 (2,1) = 0;

232 X_t2 = SR_TP.beta(:,end);

233 X_t2 (2,1) = 2;

234 X_t3 = SR_TP.beta(:,end);

235 X_t3 (1,1) = 4.00;

236 X_t3 (2,1) = 1.50;

237 h1 = 6;

238 h2 = 12;

239 h3 = 42;

240 beta_proj = NaN(SR_TP.nF,h1+h2+h3);

241 beta_proj (:,1) = SR_TP.beta(:,end);

242

243 [V,D] = eig(SR_TP.PhiP);

244 D_1 = D_target( beta_proj (:,1), V, SR_TP.mP, X_t1 , h1 -1 );

245 for ( j=2:h1+1 )

246 beta_proj(:,j) = SR_TP.mP + (V*(D_1)*V^(-1)) * ...

247 (beta_proj (:,j-1) - SR_TP.mP);

248 end

249 D_2 = D_target( beta_proj(:,h1), V, SR_TP.mP , X_t2 , h2 );

250 for ( j=h1+1:h1+h2+1 )

251 beta_proj(:,j) = SR_TP.mP + (V*(D_2)*V^(-1)) * ...

252 (beta_proj (:,j-1) - SR_TP.mP);

253 end

254 D_3 = D_target( beta_proj(:,h1+h2), V, SR_TP.mP, X_t3 , h3 );

255 for ( j=h1+h2+1:h1+h2+h3 )

256 beta_proj(:,j) = SR_TP.mP + (V*(D_3)*V^(-1)) * ...

257 (beta_proj (:,j-1) - SR_TP.mP);

258 end

259 beta_proj = real(beta_proj);

260 Y_proj = (SR_TP.B*real(beta_proj)) ’;

261 fDates = cumsum ([h1;h2;h3]);

262

263 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

264 surf(tau./12, datesCast ,Y_proj)

265 date_ticks = datenum (2018:1:2024 ,1 ,1);
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266 set(gca , ’ytick ’, date_ticks);

267 datetick(’y’,’mmm -yy’,’keepticks ’)

268 xticks (0:1:11) , xticklabels ({tau}),

269 xlabel(’Maturity (months)’), zlabel(’Yield (pct)’),

270 zlim ([0 8])

271 view ([-53 16]),

272 ytickangle (25),

273 set(gca , ’FontSize ’, 18)

274 % print -depsc Y_fixed_point_1

275

276 figure(’units ’,’normalized ’,’outerposition ’ ,[0 0 1 1])

277 plot(datesCast ,beta_proj ,’LineWidth ’ ,2),

278 hold on

279 plot(datesCast(fDates ,1),beta_proj(:,fDates ’)’,’*b’,’LineWidth ’ ,5), ...

280 legend(’F1’,’F2’,’F3’,’F4’,’Fix -points ’,’Location ’,’NW’)

281 hold off

282 date_ticks = datenum (2018:1:2024 ,1 ,1);

283 set(gca , ’xtick ’, date_ticks);

284 datetick(’x’,’mmm -yy’,’keepticks ’)

285 set(gca , ’FontSize ’, 18)

286 % print -depsc beta_fixed_point_1
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