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The frontier of e�cient portfolios
Ken Nyholm, April ��, ����

Note: the �rst code-cell in the section "Solving the optimisation problem numerically" needs to be executed
manually, a�ter the notebook has been run for the �rst time. On the �rst execution this cell produces an
error, probably because the JuMP module (used for numerical optimisation) is not yet completely integrated
into the Pluto notebook environment. But, just execute this part of the code manually a second time, and it
will work (press the "run" symbol at the end of the cell, or place the cursor in the cell and press
"Shi�t+Enter"). JuMP is an excellent optimisation package and it is a small price to pay to have to execute the
module twice!

The goal of this workbook is to use the Julia programming language to compute the e��cient
portfolio frontier, a concept deeply rooted in �nancial theory. This concept was �rst introduced by
Markowitz in 1952, who demonstrated the calculation under the assumption of either a quadratic
utility function for an individual's wealth assessment or, equivalently, the multivariate normal
distribution of �nancial returns. Although these assumptions may seem stringent, the principles
Markowitz developed continue to serve as a fundamental cornerstone in �nancial theory.

A portfolio is said to be e��cient if it is the least risky (i.e. it has the lowest variance) among all
portfolios that have identical levels of expeced return or, similarly, if it has the highest expected
return among all portfolios that have identical levels of risk. Mathematically this can be expressed
as:

where  is a vector of portfolio weights,  is the variance-covariance matrix of the eligible asset
universe,  is the vector of expected returns for each asset, and  is a vector of 's.
In words, this states that we want to �nd the asset weights  that minimises half the portfolio
variance , subject to a given level of portfolio return, and under the requirement
of full investment, i.e. that , where  refers to holdings of individual instruments in
the portfolio, for example,  mean that  of the investor's money is placed in asset
number .

https://www.jstor.org/stable/2975974
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An equivalet formulation of the problem maximises the portfolio return, subject to a given risk level
and full investment.

It is of course inconsequential whether the objective function in the minimisation problem above is
multiplied by a scalar or not. The use of  in the objective function is a practical convention that
simpli�es the calculation. When we solve the problem analytically, the �rst derivative of the matrix
expression and set it equal to zero, and we solve for . This is similar to how we would solve a
problem in regular calculus.

Di�ferentiating the expression: , with respect to , gives: . Multiplying the
objective function by  at the start e�fectively cancels out the 2 that appears from the
di�ferentiation, simplifying the expression.

Example data

I have used Google Sheets to download equity data from Google Finance for a set of international
equity market indices, and then I have copied these data to an Excel workbook to store the data
locally on my computer. The workbook is named 'ExampleEquityData.xlsx' and it holds weekly prices
covering the period from January 1999 to January 2024. For our example it is not really relevant
which indices or data we use, but having the data in Excel gives us the opportunity to see how to
transfer data from Excel to Julia. And, this is interesting in itself.
To this end the 'XLSX' and 'DataFrames' packages are needed to read data and to handle the data.

begin
using XLSX  
using DataFrames

end
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1999-01-01 1229.23 9181.43 2192.69 5006.57 5882.6 3942.66 3342.32 1

1999-01-08 1275.09 9643.32 2344.41 5006.57 5882.6 3942.66 3342.32 1

1999-01-15 1212.19 9643.32 2344.41 5370.51 6147.2 4245.42 3669.67 1

1999-01-22 1243.26 9340.55 2348.2 4973.78 5941 4054.81 3306.42 1

1999-01-29 1243.26 9120.67 2338.88 5008.21 5861.2 4019.33 3473.31 1

1999-02-05 1279.64 9358.83 2505.89 5180.29 5896 4251.8 3547.15 1

1999-02-12 1239.4 9304.24 2373.62 5097.48 5855.3 4147.3 3489.98 1

1999-02-19 1230.13 9274.89 2321.89 4896.74 5950.7 4060.36 3405.68 1

1999-02-26 1239.19 9339.95 2283.6 4823.26 6031.2 4130.48 3415.52 1

1999-03-05 1238.33 9306.58 2288.03 4903.96 6175.1 4092.94 3484.24 1

2024-01-12 4697.24 37466.1 14524.1 16594.2 7689.61 7420.69 4463.51 3

1
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more

1307

Prices  observed at time  for each of the the equity indices are now stored in the DataFrame
named dfPrices, and percentage annualised returns are then calculated by:

.

1306×10 Matrix{Float64}:
  3.66288    4.90825      6.69047    0.0       …  -3.30764    6.49317  10.5636
 -5.05881    0.0          0.0        7.01718       2.5585     0.0       0.0
  2.53083   -3.19003      0.161531  -7.67428       0.0       -5.51455  -5.79579
  0.0       -2.38219     -0.397689   0.689845      2.97972   -4.11284   2.40581
  2.88418    2.5777       6.89718    3.37825       2.40714   -2.40713   0.951522
 -3.19514   -0.585007    -5.42277   -1.61147   …  -4.23462   -3.38802  -3.14349
 -0.750754  -0.315946    -2.20347   -4.01766       0.542557   2.52726   3.56178
  ⋮                                            ⋱                       
  0.771035   2.38817      0.379397   2.27      …  -0.578673  -4.24097   2.36241
  0.211762   0.00653853   0.689264   2.18185      -3.41883   -2.99094   3.40259
  2.46313    2.8751       2.80634   -0.046433      2.03042    2.76424   2.29704
  0.748171   0.216385     1.20141   -0.270551      0.600247  -2.72727  -0.501098
  0.319178   0.80871      0.122516   0.271745      0.88581    4.23559   1.77346
 -1.53356   -0.594581    -3.29993   -0.944232  …  -0.259569  -3.04978  -0.0948387

Dates SP500 DowJones Nasdaq DAX UKX CAC Stoxx

begin
dtable = XLSX.readtable("ExampleEquityData.xlsx","Sheet1")
dfPrices = DataFrame(dtable)

end

⋅
⋅
⋅
⋅

begin
using LinearAlgebra
prices = Matrix(dfPrices)
returns=100.0.*log.(prices[2:end,2:end]./prices[1:end-1,2:end])

end
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To calculate the e��cient frontier the covariance matrix  and the vector of expected asset returns 
are needed, as shown above. These inputs are derived directly from the downloaded example data,
since I here focus only on the underlying mechanics of e��cient frontier calculations.

When applying these methodologies in real-world scenarios, it's crucial to ensure that the expected
returns and covariances align with the investor's future market expectations for the duration of the
investment horizon. Creating models to predict returns is a complex task in itself, and is beyond the
scope of this discussion. Here, our focus is solely on understanding the underlying mechanics of
e��cient frontier calculations. It's important to remember that while historical data can provide a
useful starting point, it may not always accurately re�lect future market conditions. Therefore, in
practice, the use of return prediction models or other methods to estimate future returns and
covariances may be necessary to ensure the relevance of the e��cient frontier to the investor's
speci�c situation.

To illustrate the historical relation ship between return and standard deviation each of the equity
indices' return is plotted against its standard deviation, i.e. the square root of the diagonal elements
of .

begin
using Statistics
using Plots
r = mean(returns, dims=1)'
V = cov(returns)

    scatter(sqrt.(diag(V)), r, 
    title = "Return and Standard deviation", 
    xlabel = "σ", ylabel = "r", label = "")

end
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Solving the optimisation problem
analytically

It is possible to �nd the overall minimum-variance portfolio analytically, as long as no constraints are
imposed on the portfolio weights . The standard way to do this is by setting up the Lagrange
function, by substituting the constraints (multiplied by a scalar constant) into the objective function:

Next, �rst derivatives are calculated and set equal to zero:

and, solving these three equations for the three unknowns proceedes in the following way: the �rst
of the above three equations can be rewritten as:

which substituted into the two last derivatives from above, helps us �nd the vaues/expressions for
 and :
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Collecting the expressions in a compact format, noting that the matrix multiplication of the known
quantities are scalars, the above can be written as:

where Cramer's Rule provides the solution, with:

To complete the calculations, these expressions are substitited into the expression for the portfolio
weights, , giving:

where:

https://en.wikipedia.org/wiki/Cramer%27s_rule
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Unconstrained asset weights for e��cient frontier portfolios are found as a linear/a��ne function of
the required portfolio return. The whole frontier can then be calculated by varying the required
portfolio return across all feasible values and �nding the corresponding asset weights.

It is instructive to �nd the weights of the overall minimum variance/ minimum risk portfolio. The
portfolio frontier (the whole frontier, not only the e��cient part) traces out an upward-opening
hyperbola that is turned  degrees clock-wise. We can therefore �nd the coordinates 
from the quadratic expression for  as a fundtion of  (note that given the hyperbola is turned 
dgrees clock-wise,  is the -variable in this context):

The coordinates of the minimum point is found using the standard formula for the minimum point
of a quadratic equation: , which is: :

And, to �nd corresponding minimum variance portfolio weights, this expression is inserted into the
general expression for the frontier weights:
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The weights of the minimum variance portfolio are determined solely on the basis of the covariance
between the asset in the investible universe, and that expected returns play no role here. We see
that the weights are the row sums of the inverse covariance matrix scaled by the sum of all the
elements of the inverse of the covariance matrix.

This result is valid only for the unconstrained solution to the portfolio problem. Once constraints are
imposed, for example, once only non-negative weights are allowed, the situation changes and
nummerical optimisation methods are needed.

Solving the optimisation problem
numerically

Using the ingredients prepared above, the overall minimum variance portfolio can be found. It is
done using numerical methods and imposing the constraint that all portfolio weights must be non-
negative, that is: . Below the constrained and unconstrained solutions are obtained
numerically, as well as the analytical solution for the unconstrained minimum variance portfolio,
using the derived expression.
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As it should be, the analytical and unconstrained numerical solutions produce identical weights for
the minimum variance portfolio, while the numerical solution to the solution where asset weights
are constrained to be non-negative produce a solution that ful�lls these constraints.

begin
using JuMP
using Ipopt  

nAssets = size(V,1)             # number of assets in the investment universe
σ2p(w) = w' * V * w        
rp(w) = w' * r                   
model = Model(Ipopt.Optimizer)
set_silent(model)
@variable(model, w[1:nAssets])
@constraint(model, sum(w) == 1)                    # full investment
@expression(model, variance, σ2p(w))               # portfolio variance
@expression(model, expret, rp(w))                  # portfolio return
@objective(model, Min, variance)                   # objective function

optimize!(model)
    w_mvp_unc = value.(w)

@constraint(model, [j=1:nAssets], 0 <= w[j] <= 1)  # weights between 0 and 1
optimize!(model)

    w_mvp = value.(w)

tmp = V^(-1)*ones(nAssets,1) ./ ones(nAssets,1)'*V^(-1)*ones(nAssets,1)      
     
    w_mvp_analytical = tmp./sum(tmp)   # analytical solution normalised to sum 
to 1 

println(solution_summary(model))
   println("Minimum stdev = ", sqrt(σ2p(w_mvp)))

println("ExpRet = ", rp(w_mvp))
println("w_mvp_unc(%) = ", round.(w_mvp_unc.*100; digits=2))
println("w_mvp_Analytical(%) = ", round.(w_mvp_analytical.*100; digits=2))
println("w_mvp(%) = ", round.(w_mvp.*100; digits=2))

end
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Finding frontier portfolios

begin
x = [1:1:10;]
plot(bar(x, [w_mvp_unc.*100], xticks=1:10,
       xlabel="Asset number", ylabel="Asset Weight (%)",
       title="Unconstrained", legend = false), bar(x, 

[w_mvp_analytical.*100], 
   xticks=1:10, xlabel="Asset number", title="Analytical", legend = 

false),
   bar(x, [w_mvp.*100], xticks=1:10, xlabel="Asset number",
   title="Constrained", legend = false) )

end

⋅
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We can now write a general function that determines the whole e��cient frontier. A �lexible way of
specifying linear asset weight constraints is adopted, such that both individual and group
constraints can be accommodated:

where,  is the lower bound,  is the upper bound, and  is a matrix of dimension number of
constraints by number of assets, that express the imposed constraints. For example,

let  signify the number of elements in the respective vectors, with  being the number
assets: , , and , impose the constraint that all individual weights
are between (or equal to)  and 
when , , and  it is insured that the sum of the weights equal .

And  speci�es the number of portfolios that are calculated on the e��cient frontier.

The function then takes the following inputs:

expected returns: 
covariance matrix: 
lower weight constraints: 
upper weight constraints: 
de�nition of the imposed linear constraints: 
number of e��cient frontier portfolios to be calculated: 

It produces the folloing output:

vector of dimension  by  of returns for frontier portfolios: 
vector of dimension  by  of standard deviations for frontier portfolios: 
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PortfolioFrontier (generic function with 1 method)

We use the example data from above to test the PortfolioFrontier function.

function PortfolioFrontier(r,V,l,u,C,ν)

nAssets = size(V,1)          # number of assets in the investment universe
w = 1/nAssets
σ2p(w) = w'*V*w*52           # portfolio variance, annualised with 52 weeks  

   
rp(w) = dot(w', r)*52        # portfolio return, annualised with 52 weeks    

     

optimizer = optimizer_with_attributes(Ipopt.Optimizer, "tol" => 1e-100, 
"max_iter" => 10000)

model = Model(Ipopt.Optimizer; add_bridges = false)
    model = Model(optimizer)  

set_silent(model)

# step 1: finding the minimum variance portfolio
@variable(model, w[1:nAssets;])
@constraint(model, l .<= C*w .<= u)                # imposing constraints

@expression(model, variance, σ2p(w))               # portfolio variance
@expression(model, expret, rp(w))                  # portfolio return
@objective(model, Min, variance)                   # objective function
optimize!(model)

    w_mvp = value.(w)

# step 2: finding the maximum return portfolio
@objective(model, Max, expret)                   # objective function
optimize!(model)

    w_max = value.(w)

    # step 3: find portfolios on the efficient frontier between min and max 
return

r_target = collect(range(start=rp(w_mvp), length=ν+1, stop=rp(w_max)))
    

# Initialise the output containers
Wp = zeros(nAssets, ν)   # portfolio weights

    Rp = zeros(ν, 1)         # portfolio returns
Sp = zeros(ν, 1)         # portfolio standard deviations

# Loop over each return requirement
for j in 1:ν

@constraint(model, r_target[j,1] <= expret )
@objective(model, Min, variance)                   # objective function
optimize!(model)

   w_tmp = value.(w)
        Wp[:, j] = w_tmp

Rp[j, 1] = rp(w_tmp)
Sp[j, 1] = sqrt(σ2p(w_tmp))

end

return Rp, Sp, Wp
end
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It can be an illustrative exercise to calculate all feasible portfolio compositions and to plot them
together with the e��cient allocations derived above. To achieve this, all asset compositions must be
explored and the ones where the weights sum to 1 are collected as a feasible composition. For each
of these feasible portfolios the expected return and standard deviation is then plotted. Finally, the
e��cient frontier from above is superimposed on the plot. This is done below using the example
data. We set the precision of the individual asset weights to , i.e. asset weights are changed in

 increments, and the minimum allow weight is set to  while the maximum weight is set to
. These constraints are chosen to limit the calculation time.

begin
nPort = 30
C1 = Matrix(I, nAssets, nAssets)    # lower and upper bounds on the weights
C2 = ones(1, nAssets)               # sum(w)==1
CC = [C1;C2]

    l1 = zeros(nAssets,1)
l2 = [1]
ll = [l1;l2]                        # lower bound for the constraints
uu = ones(nAssets+1,1)              # upper bound for the constraints

Rp, Sp, Wp = PortfolioFrontier(r,V,ll,uu,CC,nPort)

plot(Sp, Rp, title="Efficient Frontier", xlabel="σ", ylabel="Expected return 
%", seriestype=:scatter, marker=:circle, legend=false, framestyle=:zerolines)
end
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begin
Rp_all=[]
Sp_all=[]
rnge = 0.0:0.1:0.5
for w1 in rnge, w2 in rnge, w3 in rnge, w4 in rnge, w5 in rnge, w6 in rnge, 

w7 in rnge, w8 in rnge, w9 in rnge, w10 in rnge 
w_ = [w1,w2,w3,w4,w5,w6,w7,w8,w9,w10]
if sum(w_)==1

push!(Rp_all, dot(w_', r)*52 )        # portfolio return,
push!(Sp_all, sqrt(w_'*V*w_*52))      # portfolio variance

end
end

plot(Sp_all, Rp_all, title="Risk and Return combinations", xlabel="σ", 
ylabel="Expected return %", seriestype=:scatter, marker=:circle, legend=false, 
framestyle=:zerolines, markercolor=:white, markersize=2 )

plot!(Sp, Rp, seriestype=:scatter, markershape=:circle, legend=false, 
framestyle=:zerolines, markercolor=:blue )
end
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